Skip to main content
Log in

Physical geometry: A unified theory of gravitation, electromagnetism and other interactions

  • Research Articles
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

An invariant correlation and a variational principle are given for the theory of connections and frames introduced in previous papers. The relation of the resultant gravitation theory to Yang's theory is clarified. The resultant equations of motion, which imply a generalized Dirac equation, are used to understand geometrically certain aspects of relativistic quantum theory. The conjecture is proposed that electrornegnetism is related to anSU(2) subgroup. The possible association of the extra generators with strong and weak nuclear forces is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. González-Mártin, G. (1987).Phys. Rev. D,35, 1215.

    Google Scholar 

  2. González-Mártin, G. (1987).Phys. Rev. D,35, 1225.

    Google Scholar 

  3. Weyl, H. (1918).Sitzungsber. Preuss. Akad. Wiss.,465; (19.).Space, Time, Matter, (Methuen, London), Ch. 4. Ferrari, M., and Kijowski, J. (1982).Gen. Rel. Grav.,14, 37.

  4. Kaluza, T., (1921).Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys. Math., 966

  5. Einstein, A. (1956).The Meaning of Relativity, (Princeton University Press, Princeton, N. J., 5th ed.), p. 133.

    Google Scholar 

  6. Infeld, L., and Van der Waerden, B. L. (1933).Sitzungsber. Preuss. Akad. Wiss., Physik Math. K1, 380.

    Google Scholar 

  7. Bade, W. L., and Jehle, H. (1953).Rev. Mod. Phys.,25, 714.

    Google Scholar 

  8. Weyl, H. (1931).The Theory of Groups and Quantum Mechanics, (Dover, New York).

    Google Scholar 

  9. Carmelli, M. (1972).Ann. Phys.,71, 603.

    Google Scholar 

  10. Gonzalez-Martin, G. (1986).Acta Cient. Ven.,37, 130.

    Google Scholar 

  11. Schrödinger, E. (1929).Sitzungsber. Akad. Phys.,57, 261. Lichnerowicz, A. (1961).Comptes Rendues,252, 3742; (1961)253, 940.

    Google Scholar 

  12. Yang, C. N. (1974).Phys. Rev. Lett.,33, 445.

    Google Scholar 

  13. Møller, C. (1978).K. Dan. Vidensk Selsk. Mat. Fys. Medd.,39, 1.

    Google Scholar 

  14. Porteous, I. (1969).Topological Geometry (Van Nostrand, London), Ch. 13.

    Google Scholar 

  15. Lichnerowicz, A. (1972).Théorie Globale des Connexions et des Groupes d'Holonomie (Ed. Cremonese, Rome), p. 101.

    Google Scholar 

  16. Trautman, A. (1981). Warsaw University preprint IFT/4/84.

  17. Fairchild, E. (1976).Phys. Rev. D,14, 384.

    Google Scholar 

  18. Pavelle, R. (1975).Phys. Rev. Lett,34, 1114; (1976).Phys. Rtv. Lett.,37, 961.

    Google Scholar 

  19. Thompson, A. H. (1975).Phys. Rev. Lett.,34, 507.

    Google Scholar 

  20. Zee, A. (1982).Unity of Forces in the Universe (World Scientific, Singapore), vol. 1, p. 4.

    Google Scholar 

  21. Yukawa, H. (1935).Proc. Phys. Math. Soc. Japan,17, 48.

    Google Scholar 

  22. Fermi, E. (1934).Z. Physik,88 161; (1934).Nuovo Cimento 11, 1.

    Google Scholar 

  23. Jones, G. A. (1987).The Properties of Nuclei (Clarendon Press, Oxford), p. 29.

    Google Scholar 

  24. Faddeev, L. D., and Slavnov, A. A. (1980).Gauge Fields, transi. D. B. Pontecorvo (Benjamin/Cummings, Reading), p. 207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Martín, G. Physical geometry: A unified theory of gravitation, electromagnetism and other interactions. Gen Relat Gravit 22, 481–500 (1990). https://doi.org/10.1007/BF00756223

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00756223

Keywords

Navigation