General Relativity and Gravitation

, Volume 14, Issue 6, pp 523–530 | Cite as

General relativistic chaos and nonlinear dynamics

  • John D. Barrow
Research Articles


We describe how new ideas in dynamical systems theory find application in the description of general relativistic systems. The concept of dynamical entropy is explained and the associated invariant evaluated for the Mixmaster cosmological model. The description of cosmological models as measure preserving dynamical systems leads to a number of interconnections with new ideas in non-linear dynamics. This may provide a new avenue of approach to ascertaining the nature of the general solution to Einstein's equations.


Entropy Dynamical System General Solution Nonlinear Dynamic System Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruelle, D., and Takens, F. (1971).Commun. Math. Phys.,20, 167; Collet, P., and Eckmann, J-P. (1940).Iterated Maps on the Interval as Dynamical Systems, (Birkhauser, Boston).Google Scholar
  2. 2.
    Ruelle, D. (1978).Lecture Notes in Physics, Vol. 80, (Springer-Verlag, Berlin).Google Scholar
  3. 3.
    MacCallum, M. A. H. (1979). InGeneral Relativity: An Einstein Centenary eds. S. W. Hawking and W. Israel (Cambridge U.P., Cambridge).Google Scholar
  4. 4.
    Bowen, R. (1977).Am. Math. Soc. CBMS No. 35; Pesin, J. B. (1977).Russian Math. Surveys,32, 55.Google Scholar
  5. 5.
    Shannon, C., and Weaver, W. (1962).The Mathematical Theory of Communication (University of Illinois, Champagne-Urbana); Shaw, R. (1981).Z. Naturwiss.,36a, 80.Google Scholar
  6. 6.
    Oono, Y., and Osikawa, M. (1980).Prog. Theor. Phys.,64, 54.Google Scholar
  7. 7.
    Ornstein, D.Ergodic Theory, Randomness and Dynamical Systems (Yale Math. MonographsNo. 5), Yale Univ. Press, New Haven, 1974.Google Scholar
  8. 8.
    See Bowen, Ref 4.Google Scholar
  9. 9.
    Jantzen, R. (1980).Ann. Inst. Henri Poincaré,23, 121.Google Scholar
  10. 10.
    Anosov, D. V., and Sinai, J. G. (1967).Usp. Mat. Nauk,22, 107.Google Scholar
  11. 11.
    Penrose, R. (1979). InGeneral Relativity: An Einstein Centenary eds. S. W. Hawking and W. Israel (Cambridge U.P., Cambridge).Google Scholar
  12. 12.
    Hawking, S. W. (1975).Commun. Math. Phys.,43, 189.Google Scholar
  13. 13.
    Feigenbaum, M. (1978)J. Stat. Phys.,19, 25; (1979).Ibid.,21, 669; (1980).Commun. Math. Phys.,77, 65.Google Scholar
  14. 14.
    Belinskii, V. A., Khalatnikov, I. M., and Lifshitz, E. M., (1970).Adv. Phys.,19, 525; Misner, C. W. (1969).Phys. Rev. Lett.,22, 1071; Doroshkevich, A. D., and Novikov, I. D. (1971).Sov. Astron.,14, 763.Google Scholar
  15. 15.
    Renyi, A. (1957).Acta. Math. Acad. Sci. Hung.,8, 477.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • John D. Barrow
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations