General Relativity and Gravitation

, Volume 22, Issue 2, pp 217–231 | Cite as

Weyl gauging and spontaneously broken Lorentz symmetry: Some alternative models

  • Terry Bradfield
Research Articles


Some new effective actions are suggested for theories in which the affine connection is not completely specified by the metric. The new actions lead to models in which the metric, torsion, and Weyl vector fields all propagate. The dimensionally reduced versions do not contain third derivatives of the gauge potentials in the field equation. Some simple models which exhibit simultaneous breaking of Weyl andD-dimensional Lorentz symmetry are investigated. It is shown that it is possible for this effect to occur in any model in which the field action contains the Einstein-Hilbert term. This is due to the fact that the contortion occurs in this object as part of an indefinite quadratic form.


Simple Model Vector Field Quadratic Form Alternative Model Field Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baekler, P., Hehl, F. W., and Mielke, E. W. (1986). InProceedings of the Fourth Marcel Grossmann Meeting on General Relativity, R. Ruffini, ed. (Elsevier Science, Amsterdam) p. 277.Google Scholar
  2. 2.
    Weyl, H. (1918).Sitzungsber. Preuss. Akad. Wis. Berlin, 465.Google Scholar
  3. 3.
    Minkowski, P. (1977).Phys. Lett.,B71, 419.Google Scholar
  4. 4.
    Nieh, H. T. (1982).Phys. Lett.,A88, 388.Google Scholar
  5. 5.
    Zee, A. (1979).Phys. Rev. Lett.,42, 417.Google Scholar
  6. 6.
    Hehl, F. W., McCrea, J. D., and Mielke, E. W. (1987). “Exakte Wissenschaften und ihre philosophische Grundlegung”. InVortrāge des Internationalen Hermann-Weyl-Kongresses, Kiel 1385, Deppert, W., Hübner K., Oberschelp, A., and Weidemann, V., eds. (Peter Lang, Frankfurt).Google Scholar
  7. 7.
    Hayashi, K., Kasuya, M., and Shirafuji, T. (1977).Prog. Theor. Physics,57, 431.Google Scholar
  8. 8.
    Stelle, K. S. (1977).Gen. Rel. Grav.,9, 353.Google Scholar
  9. 9.
    Sezgin, E. and van Nieuwenhuizen, P. (1980).Phys. Rev. D,21, 3269.Google Scholar
  10. 10.
    Sezgin, E. (1981)Phys. Rev. D,24, 1677.Google Scholar
  11. 11.
    Hayashi, K., and Shirafuji, T. (1980)Prog. Theor. Physics,64, 866.Google Scholar
  12. 12.
    Hayashi, K., and Shirafuji, T. (1980)Prog. Theor. Physics,64, 883.Google Scholar
  13. 13.
    Kuhfuss, R., and Nitsch, J. (1986).Gen. Rel. Grav.,18, 1207.Google Scholar
  14. 14.
    Kopczynski, W. (1979).Acta Phys. Pol. B10, 365.Google Scholar
  15. 15.
    Orzalesi, C., and Pauri, M. (1981).Phys. Lett.,107B, p. 186.Google Scholar
  16. 16.
    Tze, C. (1983).Phys. Lett.,128B, 160.Google Scholar
  17. 17.
    Kalinowski, M. (1983).Int. J. Theor. Phys.,22, 385.Google Scholar
  18. 18.
    Kalinowski, M. (1984).Int. J. Theor. Phys.,23, 131.Google Scholar
  19. 19.
    Gasperini, M. (1986).Phys. Rev. D,33, 3594.Google Scholar
  20. 20.
    Ross, D. K. (1983).J. Physics A: Math Gen.,16, 3879.Google Scholar
  21. 21.
    Lovelock, D. (1971).J. Math. Phys.,12, 498.Google Scholar
  22. 22.
    Müller-Hoissen, F. (1985).Phys. Lett.,163B, 106.Google Scholar
  23. 23.
    Müller-Hoissen, F. (1986).Class. Quant. Grav.,3, L133.Google Scholar
  24. 24.
    Müller-Hoissen, F. (1987).Europhys. Lett.,3, 1075.Google Scholar
  25. 25.
    Wetterich, C. (1982).Phys. Lett.,113B, 377.Google Scholar
  26. 26.
    Wetterich, C., and Reuter, M. (1987).Nucl. Phys. B,289, 757.Google Scholar
  27. 27.
    Alshuler, B. L. (1987).Phys. Rev. D,35, 3804.Google Scholar
  28. 28.
    Madore, J. (1985).Phys. Lett.,110A, 289.Google Scholar
  29. 29.
    Bradfield, T. (1989).Gen. Rel. Grav.,21, 665Google Scholar
  30. 30.
    Scherk, J., and Schwarz, J. (1979).Nucl. Phys. B,153, 61.Google Scholar
  31. 31.
    Zwiebach, B. (1985).Phys. Lett.,156B, 315.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Terry Bradfield
    • 1
  1. 1.College of Natural Science and MathematicsNortheastern State UniversityTahlequahUSA

Personalised recommendations