General Relativity and Gravitation

, Volume 14, Issue 1, pp 87–96 | Cite as

Some global properties of closed spatially homogeneous space-times

  • Gregory J. Galloway
Research Articles


We consider some properties of the space-times which contain a spatially homogeneous domain of dependenceD(V), whereF is acompact achronal spatial hypersurface of homogeneity. For example, it is shown that ifV has a nonempty future Cauchy horizon then the timelike geodesies orthogonal toV are future incomplete and there is strong causality failure onH+(V). Also, conditions for the global hyperbolicity of such space-times are obtained.


Differential Geometry Global Property Cauchy Horizon Homogeneous Domain Global Hyperbolicity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Penrose, R. (1972).Techniques of Differential Topology in Relativity, Vol. 7 of the Regional Conference Series in Applied Mathematics. SIAM, Philadelphia.Google Scholar
  2. 2.
    Hawking, S. W., and Ellis, G. F. R. (1973).The Large Scale Structure of the Universe. Cambridge University Press, Cambridge.Google Scholar
  3. 3.
    Geroch, R. (1970).J. Math. Phys.,11, (2), 437.Google Scholar
  4. 4.
    Gowdy, R. H. (1977).J. Math. Phys.,18, (9), 1798.Google Scholar
  5. 5.
    Budic, R., Isenberg, J., Lindblom, L., and Yasskin, P. B. (1978).Commun. Math. Phys.,61, 87.Google Scholar
  6. 6.
    Ellis, G. F. R., and King, A. R. (1974).Commun. Math. Phys.,38, 119.Google Scholar
  7. 7.
    MacCallum, M. A. H. (1973). Cosmological models from a geometric point of view, inCargese Lectures in Physics, Vol. 6, E. Schatzmann, ed. Gorden and Breach, New York.Google Scholar
  8. 8.
    Bishop, R. L., and Crittenden, R. J. (1964).Geometry of Manifolds. Academic Press, New York.Google Scholar
  9. 9.
    Frankel, T. (1979).Gravitational Curvature. W. H. Freeman, San Francisco.Google Scholar
  10. 10.
    Siklos, S. T. C. (1978).Commun. Math. Phys.,58, 255.Google Scholar
  11. 11.
    Tipler, F. J. (1977).Ann. Phys. (N.Y.).,108, 1.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Gregory J. Galloway
    • 1
  1. 1.Department of MathematicsUniversity of MiamiCoral Gables

Personalised recommendations