Advertisement

General Relativity and Gravitation

, Volume 14, Issue 1, pp 49–52 | Cite as

Inequivalent metrics with equal spin coefficients

  • Anders Karlhede
  • Jan E. Áman
Research Articles

Abstract

The spin coefficients, the curvature tensor, and the first covariant derivative of the curvature tensor are shown to be insufficient for a complete description of a gravitational field. The inadequacy of the description becomes evident when a set of (unphysical) inequivalent metrics is constructed which cannot be distinguished by only examining these entities. The inequivalence manifests itself in the second covariant derivative.

Keywords

Differential Geometry Covariant Derivative Gravitational Field Curvature Tensor Spin Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cartan, E. (1946).Leçons sur la Geometrie des Espaces de Riemann. Gauthier-Villars, Paris.Google Scholar
  2. 2.
    Brans, C. H. (1965).J. Math. Phys.,6, 94.Google Scholar
  3. 3.
    Karlhede, A. (1980).Gen. Rel. Grav.,12, 693.Google Scholar
  4. 4.
    Ehlers, J., and Kundt, W. (1962). InGravitation: An Introduction to Current Research, L. Witten, ed. John Wiley and Sons, New York.Google Scholar
  5. 5.
    Áman, J. E., and Karlhede, A. (1980).Phys. Lett.,80A, 229.Google Scholar
  6. 6.
    Karlhede, A., and Aman, J. E. (1981). A classification of the vacuumD metrics, preprint, Institute of Theoretical Physics, University of Stockholm.Google Scholar
  7. 7.
    Siklos, S. Private communication.Google Scholar
  8. 8.
    Frick, I. (1977). The computer algebra system SHEEP, what it can and cannot do in general relativity, preprint, Institute of Theoretical Physics, University of Stockholm.Google Scholar
  9. 9.
    Penrose, R. (1960).Ann. Phys. (N. Y.),10, 171.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Anders Karlhede
    • 1
  • Jan E. Áman
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of StockholmStockholmSweden

Personalised recommendations