General Relativity and Gravitation

, Volume 22, Issue 6, pp 683–705 | Cite as

Geodesics in Gödel-type space-times

  • M. O. Calvão
  • I. Damião Soares
  • J. Tiomno
Research Articles


We investigate the geodesic curves of the homogeneous Gödel-type space-times, which constitute a two-parameter (l and Ω) class of solutions presented to several theories of gravitation (general relativity, Einstein-Cartan and higher derivative). To this end, we first examine the qualitative properties of those curves by means of the introduction of an effective potential and then accomplish the analytical integration of the equations of motion. We show that some of the qualitative features of the free motion in GSdel's universe (l2=2Ω2) are preserved in all space-times, namely: (a) the projections of the geodesics onto the 2-surface (r, φ) are simple closed curves (with some exceptions forl2≥4Ω2), and (b) the geodesies for which the ratio of azimuthal angular momentum to total energy,γ, is equal to zero always cross the originr=0. However, two new cases appear: (i) radially unbounded geodesies withγ assuming any (real) value, which may occur only for the causal space-times (l2≥4Ω2), and (ii) geodesies withγ bounded both below and above, which always occur for the circular family (l2<0) of space-times.


Total Energy General Relativity Angular Momentum Differential Geometry Effective Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lanczos, K. (1924).Z. Phys.,21 73.Google Scholar
  2. 2.
    Gödel, K. (1949).Rev. Mod. Phys.,21 447.Google Scholar
  3. 3.
    Kundt, W. (1956).Z. Phys.,145 611.Google Scholar
  4. 4.
    Chandrasekhar, S., and Wright, J. P. (1961).Proc. Nat. Acad. Sci. USA,47 341.Google Scholar
  5. 5.
    Lathrop, J., and Teglas, R. (1978).Nuovo Cimento,B43 162.Google Scholar
  6. 6.
    Pfarr, J. (1981)Gen. Rel. Grav.,13, 1073.Google Scholar
  7. 7.
    Santalò, L. A. (1982).Tensor,37 173.Google Scholar
  8. 8.
    Novello, M., Soares, I. D., and Tiomno, J. (1983).Phys. Rev. D,27, 779;Phys. Rev. D,28, 1561(E).Google Scholar
  9. 9.
    Banerjee, A., and Banerji, S. (1968).J. Phys. A.,1 188.Google Scholar
  10. 10.
    Som, M. M., and Raychaudhuri, A. K. (1968).Proc. Roy. Soc. London,A 304 81.Google Scholar
  11. 11.
    Rebouças, M. (1979).Phys. Lett.,A 70 161.Google Scholar
  12. 12.
    Novello, M., and Reboucas, M. (1979).Phys. Rev. D,19, 2850.Google Scholar
  13. 13.
    Hoenselaers, C., and Vishveshwara, C. V. (1979).Gen. Rel Grav.,10, 43.Google Scholar
  14. 14.
    Chakrabarti, S. K. (1980).Gen. Rel. Grav.,12, 925.Google Scholar
  15. 15.
    Raychaudhuri, A. K., and Thakurta, S. N. G. (1980).Phys. Rev. D,22, 802.Google Scholar
  16. 16.
    Rebouças, M., and Tiomno, J. (1983).Phys. Rev. D,28, 1251.Google Scholar
  17. 17.
    Oliveira, J. D., Teixeira, A. F. F., and Tiomno, J. (1986).Phys. Rev. D,34, 3661.Google Scholar
  18. 18.
    Accioly, A. J., and Goncalves, A. T. (1987).J. Math. Phys.,28, 1547.Google Scholar
  19. 19.
    Sasse, F. D., Soares, I. D., and Tiomno, J. (to be published).Google Scholar
  20. 20.
    Ellis, G. F. R. (1971). InProceedings of the International School of Physics Enrico Fermi, XLVII: General Relativity and Cosmology, 1969, Sachs, R. K. ed., (Academic Press, New York).Google Scholar
  21. 21.
    Weyssenhoff, J., and Raabe, A. (1947).Acta Phys. Pol.,9 7.Google Scholar
  22. 22.
    Adler, R., Bazin, M., and Schiffer, M. (1975).Introduction to General Relativity, (McGraw-Hill, New York, 2nd. ed.), Ch. 7.Google Scholar
  23. 23.
    Misner, C. W., Thome, K. S., and Wheeler, J. A. (1973).Gravitation (W. H. Freeman, San Francisco), Ch. 25.Google Scholar
  24. 24.
    Paiva, F. M., Reboucas, M. J., and Teixeira, A. F. F. (1987).Phys. Lett.,A 126 168.Google Scholar
  25. 25.
    Anderson, J. L. (1967).Principles of Relativity Physics (Academic Press, New York), Ch. 2.Google Scholar
  26. 26.
    Calvão, M. O., Reboucas, M. J., Teixeira, A. F. F., and Silva, W. M., Jr. (1988).J. Math. Phys.,29, 1127.Google Scholar
  27. 27.
    Figueiredo, B. D. B., Soares, I. D., and Tiomno, J. (to be published).Google Scholar
  28. 28.
    Stoeger, W. R. (1985).Gen. Rel. Grav.,17, 981.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • M. O. Calvão
    • 1
  • I. Damião Soares
    • 1
  • J. Tiomno
    • 1
  1. 1.Centro Brasileiro de Pesquisas FísicasRio de Janeiro, RJBrazil

Personalised recommendations