Combustion, Explosion and Shock Waves

, Volume 28, Issue 5, pp 462–474 | Cite as

Spontaneous combustion regimes

  • S. M. Frolov
  • B. E. Gel'fand
  • S. A. Tsyganov
Article

Keywords

Combustion Dynamical System Mechanical Engineer Spontaneous Combustion Combustion Regime 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    E. Mallard and H. Le Chatelier, “On the propagation velocity of inflammation in gaseous explosive mixtures,” Compt. Rend. Acad. Sci. Paris, France,93, 145 (1881).Google Scholar
  2. 2.
    A. S. Sokolik, Combustion and Detonation in Gases [in Russian], GTTI, Leningrad (1934).Google Scholar
  3. 3.
    G. F. Ricardo, Internal Combustion Engines [Russian translation], OGIZ, Moscow (1932).Google Scholar
  4. 4.
    Ya. B. Zel'dovich, V. N. Librovich, et al., “Occurrence of detonation in nonuniformly heated gas,” Prikl. Mekh. Tekh. Fiz., No. 2, 76 (1970).Google Scholar
  5. 5.
    A. N. Voinov, “Experimental investigation of detonation in engines,” in: E. A. Chudakov (ed.), Combustion in Transport Piston Engines [in Russian], Izd. Akad. Nauk SSSR, Moscow (1951), p. 212Google Scholar
  6. 6.
    A. S. Sokolik, “Fundamentals of the theory of detonation in engines,” in: Ibid., p. 185.Google Scholar
  7. 7.
    T. Mail, “Photography of the process of combustion and detonation in a piston engine with a frequency of 500,000 frames/sec” in: Problems of Combustion [Russian translation], IL, Moscow (1953), p. 85.Google Scholar
  8. 8.
    J. D. Gabano, T. Kageyama, et al., “Experimental simulation of engine knock by means of a preheated static combustion chamber,” in: Proc. 22nd Int. Symp. Combust., The Combust. Inst. (1988).Google Scholar
  9. 9.
    U. Spicher and H. P. Kollmeier, “Detection of flame propagation during knocking combustion by optical fiber diagnostics,” SAE Techn. Pap. Ser. 861532, 12 (1986).Google Scholar
  10. 10.
    U. Spicher, G. Schmitz, et al., “Application of a new optical fiber technique for flame propagation diagnostics in IC engines,” Ibid., 881637, 10 (1988).Google Scholar
  11. 11.
    G. Klingenberg, “Gun muzzle blast and flash,” Propellants, Explosives, Pyrotechn., No. 14, 57 (1989).Google Scholar
  12. 12.
    A. Peretz, K. K. Kuo, et al., “The starting transient of solid propellant rocket motors with high internal velocity,” AAIA J., No. 11, 1719 (1973).Google Scholar
  13. 13.
    J. Houseman and A. Li, “Microexplosions during mixing of components of nitrogen tetroxide fuel [Russian translation], Vopr. Raketn. Tekh., No. 10, 38 (1974).Google Scholar
  14. 14.
    A. P. Suetinov and Yu. P. Moskvin, “Flame propagation in Cl2−H2 and ClI−Cl2−H2 mixtures preliminarily irradiated by a UV-light pulse,” in: Combustion of Heterogeneous and Gaseous Systems [in Russian], OIKhF Akad. Nauk SSSR, Chernogolovka (1986), p. 3.Google Scholar
  15. 15.
    G. I. Kozlov, V. A. Kuznetsov, et al., “Explosive combustion of propane-air mixtures in focused power radiation field of O2 laser,” in: Proc. 13th ICDERS, Nagoya (1991), p. 8.Google Scholar
  16. 16.
    J. H. S. Lee and C. Guirao, “Gasdynamic effects of fast exothermic reactions,” in: C. Capellos and R. F. Walker (eds.) Fast Reactions in Energetic Systems, D. Reidel Publ. Co., N.Y. (1981), p. 245.Google Scholar
  17. 17.
    J. H. S. Lee and I. O. Moen, “The mechanism of transition from deflagration to detonation in vapor cloud explosions,” in: Prog. Energy Combust. Sci.,6, No. 4, 359 (1980).Google Scholar
  18. 18.
    L. D. Landau, “Theory of slow combustion,” Zh. Eksp. Teor. Fiz.,14, No. 6, 240 (1944).Google Scholar
  19. 19.
    G. H. Markstein, “Flow disturbances induced near a slightly wavy contact surface or flame front, traversed by a shock wave,” J. Aeron. Sci.,24, 238 (1957).Google Scholar
  20. 20.
    S. M. Kogarko, V. I. Skobelkin, et al., “Interaction of shock waves with a flame front,” Dokl. Akad. Nauk SSSR,120, 1346 (1958).Google Scholar
  21. 21.
    K. I. Shchelkin and Ya. K. Troshin, Gasdynamics of Combustion [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  22. 22.
    A. Egerton and S. Gates, “On detonation of acetylene and of pentane,” Proc. Royal Soc. A.,114, No. 137, 152 (1927).Google Scholar
  23. 23.
    R. I. Soloukhin, “Transition from combustion to detonation in gases,” Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 128 (1961).Google Scholar
  24. 24.
    P. A. Urtiew and A. K. Oppenheim, “Experimental observations of the transition to detonation in vapor cloud explosions,” Proc. Royal Soc.,A295, 13 (1966).Google Scholar
  25. 25.
    Ya. B. Zel'dovich, S. M. Kogarko, et al., “Experimental investigation of a spherical gas detonation,” Zh. Tekh. Fiz., 1744 (1956).Google Scholar
  26. 26.
    G. G. Bach, R. Knystautas, et al., “Direct initiation of spherical detonations in gaseous explosions,” in: Proc. 12th Int. Symp. Combust., The Combust. Inst. (1967).Google Scholar
  27. 27.
    S. M. Kogarko, O. E. Popov, and S. M. Sheparnev, “Possibility of exciting spherical pressure waves in a liquid during fast combustion of gaseous fuel-air mixtures,” Dokl. Akad. Nauk SSSR,222, No. 4, 813 (1975).Google Scholar
  28. 28.
    S. M. Kogarko, “The generation of a spherical detonation in gaseous mixtures,” in: Proc. EuroMech. Symp., Warsaw (1976).Google Scholar
  29. 29.
    R. Knystautas, J. H. S. Lee, et al., “Direct initiation of spherical detonation by a hot turbulent jet,” Proc. 17th Int. Symp. Combust., The Combust. Inst. (1979).Google Scholar
  30. 30.
    M. Inada, J. H. S. Lee, et al., “Photographic study of the direct initiation of detonation by a turbulent jet,” in: Proc. 13th ICDERS, Nagoya (1991), p. 25.Google Scholar
  31. 31.
    D. D. Radford, C. K. Chan, et al., “Initiation of detonation by vortex-flame interaction,” Ibid., in: Proc. 13th ICDERS, Nagoya (1991), p. 28.Google Scholar
  32. 32.
    J. H. S. Lee and I. O. Moen, “Fundamental mechanisms of unconfined detonation of fuel-air explosions,” AFORSR-78-1426 (1979), p. 22.Google Scholar
  33. 33.
    M. Berman, “A critical review of recent large-scale experiments of H2-air detonations,” Nucl. Sci. Energ.,93, No. 3, 321 (1986).Google Scholar
  34. 34.
    S. V. Murray, I. O. Moen, et al., “Initiation of hydrogen-air detonations by turbulent fluorine-air jets,” in: Prog. Astr. Aeron., 133: Dynamics of Detonations and Explosions: Detonations, AIAA Inc., N. Y. (1989), p. 91.Google Scholar
  35. 35.
    S. V. Murray and P. A. Thibault, “Chemical initiation of detonation in hydrocarbon-air mixtures,” in: Proc. 13th ICDERS, Nagoya (1991), p. 22.Google Scholar
  36. 36.
    B. A. Thrush, “The homogeneity of explosion initiation by flash photolysis,” Proc. Royal Soc.,A233, 439 (1956).Google Scholar
  37. 37.
    J. Wadsworth, “Use of flash photolysis to initiate detonation in gaseous mixtures,” Nature,190, 623 (1961).Google Scholar
  38. 38.
    N. N. Semenov, Chain Reactions [in Russian], GKhTI, Leningrad (1934).Google Scholar
  39. 39.
    J. H. S. Lee, R. Knystautas, et al., “Photochemical initiation of gaseous detonation,” Acta Astronaut.,5, No. 11–12, 971 (1978).Google Scholar
  40. 40.
    A. A. Borisov, B. E. Gel'fand, et al., “Ignition of combustible gaseous mixtures as a result of focusing reflected shock waves,” Khim. Fiz.,7, 1387 (1988).Google Scholar
  41. 41.
    B. E. Gelfand, S. M. Frolov, et al., “Three cases of shock wave focusing in a two-phase combustible medium,” in: Proc. 18th Int. Symp. Shock Waves (1991), F43.Google Scholar
  42. 42.
    C. K. Chan, D. Lau, et al., “Ignition and detonation initiation by shock focusing,” in: Proc. 16th Symp. (Int.) Shock Tubes and Waves (1987), BH5.Google Scholar
  43. 43.
    A. S. Sokolik, Autoignition, Flame, and Detonation in Gases [in Russian], Izd. Akad. Nauk SSSR, Moscow (1960).Google Scholar
  44. 44.
    J. Livengood and W. Leary, “Autoignition during fast compression,” Problems of Combustion [Russian translation], IL, Moscow, No. 2, 66 (1953).Google Scholar
  45. 45.
    S. G. Zaitsev and R. I. Soloukhin, “Ignition of an adiabatically heated gaseous mixture,” Dokl. Akad. Nauk SSSR,122, No. 6, 1039 (1958).Google Scholar
  46. 46.
    V. V. Voevodskii and R. I. Soloukhin, “Mechanism and limits of chain autoignition of hydrogen with oxygen in shock waves,” Dokl. Akad. Nauk SSSR,154, No. 6, 1425 (1964).Google Scholar
  47. 47.
    J. W. Meyer, L. M. Cohen, et al., “Study of exothermic processess in shock ignited gases by the use of laser shear interferometry,” Comb. Sci. Techn.,3, No. 4, 185 (1973).Google Scholar
  48. 48.
    V. P. Karpov and A. S. Sokolik, “Mechanism of shock wave amplification during interaction with a flame with a “cellular” structure,” Fiz. Goren. Vzryva,5, No. 2, 200 (1969).Google Scholar
  49. 49.
    Ya. B. Zel'dovich, “Fluctuation of the induction period of a branched chain reaction,” Dokl. Akad. Nauk SSSR,257, No. 5, 1173 (1981).Google Scholar
  50. 50.
    B. E. Gel'fand, S. M. Frolov, et al., “Criterion of generation of shock and detonation waves in a reacting medium,” Khim. Fiz.,8, No. 5, 655 (1989).Google Scholar
  51. 51.
    A. A. Vasil'ev, V. V. Mitrofanov, et al., “Detonation waves in gases,” Fiz. Goren Vzryva,23, No. 5, 109 (1987).Google Scholar
  52. 52.
    S. M. Aksamentov and V. V. Mitrofanov, “Numerical simulation of galloping detonations,” in: Proc. 13th ICDERS, Nagoya (1991), p. 9.Google Scholar
  53. 53.
    Ya. B. Zel'dovich, Classification of Exothermic Reaction Regimes as a Function of Initial Conditions [in Russian], OIKhF Akad. Nauk SSSR, Chernogolovka (1978).Google Scholar
  54. 54.
    D. W. Miolaitis, “The unsteady propagation of premixed flames through nonhomogeneous mixtures and thermal gradients,” Combust. Flame,57, 87 (1984).Google Scholar
  55. 55.
    Ya. B. Zel'dovich, Flame Propagation in a Mixture Reacting at the Initial Temperature [in Russian], OIKhF, Akad. Nauk SSSR, Chernogolovka (1978).Google Scholar
  56. 56.
    A. P. Aldushin, Ya. B. Zel'dovich, et al., Flame Propagation in a Reacting Gaseous Mixture [in Russian], OIKhF Akad. Nauk SSSR, Chernogolovka (1979).Google Scholar
  57. 57.
    S. M. Frolov, A. N. Lipatnikov, et al., “Occurrence of detonation in an internal combustion engine,” Dokl. Akad. Nauk SSSR,318, No. 2, 389 (1991).Google Scholar
  58. 58.
    D. Kaufmann, P. Roth, “Numerical simulation of one-dimensional laminar flames propagating into reacting premixed gases,” Combust. Flame,80, 385 (1990).Google Scholar
  59. 59.
    Ya. B. Zel'dovich and A. S. Kompaneets, Detonation Theory [in Russian], GITTL, Moscow (1955).Google Scholar
  60. 60.
    P. Thibault, N. Yoshikawa, et al., “Shock wave amplication through coherent energy release,” in: Proc. Techn. Meet. East. Sect. Comb. Inst., Miami Beach (1978).Google Scholar
  61. 61.
    H. O. Barthel and R. A. Strehlow, “Direct detonation initiation by localized enhanced reactivity,” in: 17th Aerospace Sciences Meeting, New Orleans, LA, AIAA 79-0286 (1979).Google Scholar
  62. 62.
    B. E. Gel'fand, A. N. Polenov, et al., “Occurrence of detonation in a nonuniformly heated gaseous mixture,” Fiz. Goren. Vzryva,21, No. 4, 118 (1985).Google Scholar
  63. 63.
    B. E. Gel'fand, S. M. Frolov, et al., “Occurrence of detonation in systems with nonuniform temperature and concentration distribution,” Khim. Fiz.,5, No. 8, 1277 (1986).Google Scholar
  64. 64.
    Ya. B. Zeldovich, B. E. Gel'fand, et al., “Concentration and temperature nonuniformities (CTN) of combustible mixtures as a reason of pressure waves generation,” in: Dynamics of Explosions, AIAA Inc., N.Y.,114, 99 (1988).Google Scholar
  65. 65.
    B. E. Gel'fand, S. M. Frolov, et al., “Occurrence of detonation in regions with nonuni-form temperature and concentration distribution,” Fiz. Goren. Vzryva,24, No. 6, 101 (1988).Google Scholar
  66. 66.
    B. E. Gel'fand, G. M. Makhviladze, et al., Spontaneous Occurrence of Explosive Reaction Regimes in Regions with Temperature and Concentration Nonuniformities [in Russian], Preprint Inst. Probl. Mekh., Akad. Nauk SSSR, No. 358, Moscow (1988).Google Scholar
  67. 67.
    B. E. Gel'fand, G. M. Makhviladze, et al., Criterion of Explosive Reaction Regimes on Nonuniformities of the Distribution of the Autoignition Delay Period [in Russian], Preprint Inst. Probl. Mekh., Akad. Nauk SSSR, No. 424, Moscow (1989).Google Scholar
  68. 68.
    G. M. Makhviladze and D. I. Rogatykh, “Initial temperature and concentration nonuniformities — the cause of the explosive occurrence of a chemical reaction in a combustible gas,” Khim. Fiz.,8, No. 2, 281 (1989).Google Scholar
  69. 69.
    S. B. Dorofeev, A. S. Kochurko, et al., Detonation Onset Conditions in Spatially Nonuniform Combustible Mixtures, Prepr. IAE-4871/13, Atominform, Moscow (1989).Google Scholar
  70. 70.
    S. M. Frolov, B. E. Gelfand, et al., “Initiation of a detonation wave due to multistage self-ignition,” in: Proc. Astr. Aeron., 133: Dynamics of Detonations and Explosions: Detonations, AIAA, N.Y. (1989), p. 133.Google Scholar
  71. 71.
    S. M. Frolov, J. Timmler, et al., “The effect of inert particle evaporation on the chemical reaction in a combustible medium,” in: Proc. 13th ICDERS, Nagoya (1991), p. 63.Google Scholar
  72. 72.
    N. N. Smirnov, A. Yu. Demyanov, et al., “Numerical modeling of deflagration-to-detonation transition in gas mixtures,” Ibid., in: Proc. 13th ICDERS, Nagoya (1991), p. 34.Google Scholar
  73. 73.
    N. Yoshikawa and J. H. Lee, “Formation and propagation of photochemical detonations in hydrogen chloride mixtures,” Ibid., in: Proc. 13th ICDERS, Nagoya (1991), p. 6.Google Scholar
  74. 74.
    U. Maas and J. Warnatz, Detailed numerical modeling of H2−O2 ignition by hot spots,” in: Prog. Astr. Aeron., 133: Dynamics of Detonations and Explosions: Detonations, AIAA, N. Y. (1989), p. 3.Google Scholar
  75. 75.
    G. Goyal, J. Warnatz, et al., “Numerical studies of hot spot ignition in H2−O2 and CH4-air mixtures,” in: Proc. 23rd Int. Symp. Combust., The Combust. Inst. (1990), p. 1767.Google Scholar
  76. 76.
    H. J. Weber, A. Mack, et al., “Numerical simulation of ignition process and combustion wave propagation in H2/O2 reaction systems,” in: Proc. 13th IGDERS, Nagoya (1991), p. 110.Google Scholar
  77. 77.
    J. F. Clarke, The Mathematics of Combustion, Ed. by J. D. Buckmaster, SIAM, Philadelphia (1985), p. 183.Google Scholar
  78. 78.
    J. W. Dold, Fluid Dynamical Aspects of Combustion Theory, Ed. by A. Tesei and M. Onofri, Longman (1991).Google Scholar
  79. 79.
    J. W. Dold and M. Short, “Compressibility corrections to Zeldovich's spontaneous flame and the onset of an explosion in a nonuniformly preheated medium,” in: Proc. 13th ICDERS, Nagoya (1991), p. 77.Google Scholar
  80. 80.
    N. I. Kidin and I. A. Filimonov, “Spontaneous propagation of exothermic reaction fronts and shock wave generation in nonuniformly heated gas mixtures,” Ibid., in: Proc. 13th ICDERS, Nagoya (1991), p. 151.Google Scholar
  81. 81.
    K. Terao and Y. Motoyama, “Propagation velocity of detonation waves in a high temperature mixture,” in: Proc. 18th Int. Symp. Shock Waves, Sendai, Tohoku Univ. (1991), F22.Google Scholar
  82. 82.
    S. S. Rybanin and S. L. Sobolev, Ignition Wave Propagation in Macroheterogeneous Systems [in Russian], OIKhF Akad. Nauk SSSR, Chernogolovka (1986).Google Scholar
  83. 83.
    B. E. Gel'fand, S. M. Frolov, et al., “Direct initiation of detonation in a gas suspension,” Khim. Fiz.,8, No. 11, 1547 (1989).Google Scholar
  84. 84.
    V. L. Alekseev, S. V. Dorofeev, et al., “Investigation of blast wave transformation to detonation in two-phase confined clouds,” in: Proc. 13th ICDERS, Nagoya (1991), p. 80.Google Scholar
  85. 85.
    S. I. Blinnikov and A. M. Khokhlov, “Stage of spontaneous flame propagation in supernovae,” Pis'ma Astron. Zh.,13, No. 10, 868 (1987).Google Scholar
  86. 86.
    B. E. Gel'fand, S. M. Frolov, et al., “Mechanism of explosions in gas-pumping units of main gas pipelines,” Fiz. Goren. Vzryyva,24, No. 3, 101 (1988).Google Scholar
  87. 87.
    B. E. Gel'fand, S. M. Frolov, et al., “Initiation of detonation due to multistage autoignition,” Fiz. Goren. Vzryva,25, No. 4, 93 (1989).Google Scholar
  88. 88.
    S. M. Frolov, B. E. Gel'fand, et al., “Initiation of a detonation wave due to multistage self-ignition,” in: Dynamics of Detonations and Explosions, Detonations, AIAA Inc., N.Y. (1989), p. 133.Google Scholar
  89. 89.
    S. M. Frolov, B. E. Gelfand, et al., “A possible mechanism for the onset of pressure oscillation during venting,” J. Loss Prev. Process Ind.,3, No. 1, 64 (1990).Google Scholar
  90. 90.
    B. E. Gel'fand, S. M. Frolov, et al., “Lagrange problem with gradual energy release in an Arrhenius-type reaction,” Khim. Fiz.,7, No. 2, 263 (1988).Google Scholar
  91. 91.
    R. K. Cheng, J. M. Short, et al., “Diagnostics of the exothermic process,” in: Prog. Astr. Aeron., AIAA Inc., N.Y., Vol. 53 (1977), p. 611.Google Scholar
  92. 92.
    S. M. Aksamentov, I. A. Kiselev, et al., “Numerical study of the conditions of decay of a detonation in a region with a nonuniform temperature and concentration distribution,” Fiz. Goren. Vzryva.27, No. 5, 130 (1991).Google Scholar
  93. 93.
    K. Terao and T. Azumatei, “Cellular pattern formation in detonation waves as a stochastic phenomenon,” Jap. J. Appl. Phys,28, No. 4, 723 (1989).Google Scholar
  94. 94.
    B. V. Voitsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan, Structure of the Detonation Front in Gases [in Russian], Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1963).Google Scholar
  95. 95.
    A. N. Dremin, “Pulsating detonation front,” Fiz. Goren. Vzryva,19, No. 4, 159 (1983).Google Scholar
  96. 96.
    Y. Takano, “Simulations for detonation initiation behind reflected shock waves,” in: Proc. 13th ICDERS, Nagoya (1991), p. 27.Google Scholar
  97. 97.
    T. Hasegawa, A. Arai, et al., “Autoignition of a turbulent premixed gas,” Ibid., in: Proc. 13th ICDERS, Nagoya (1991), p. 158.Google Scholar
  98. 98.
    M. M. Lefebvre, W. S. Oran, et al., “Simulation of cellular structure in a detonation wave,” Ibid., in: Proc. 13th ICDERS, Nagoya (1991), p. 4.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • S. M. Frolov
  • B. E. Gel'fand
  • S. A. Tsyganov

There are no affiliations available

Personalised recommendations