Skip to main content
Log in

Microyield and fracture in polycrystalline MgO

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microyield and plastic flow occurring in polycrystalline MgO prior to fracture at room temperature is examined. It is shown that the initial dislocation activity occurs in the region of grain boundaries at a stress independent of grain size and below the microyield stress. The microyield stress corresponds to the stress necessary for propagating slip across the grain diameter but is below the stress necessary to produce dislocation activity in adjacent grains. The microyield stress obeys a Petch type of relationship with respect to grain size and this is attributed to the variation of dislocation density with grain size. The fracture stress — grain size relationship also follows the Petch equation but indicates that extensive work hardening has occurred prior to fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Davidge andA. G. Evans,Mat. Sci. Eng. 6 (1970) 281.

    Google Scholar 

  2. N. J. Petch, “Fracture”, ed H. Liebowitz, (Academic Press, London, 1968) p. 351.

    Google Scholar 

  3. A. A. Griffith,Phil. Trans. Roy. Soc. London 221A (1920) 163.

    Google Scholar 

  4. E. Orowan, “Fatigue and Fracture of Metals” (Wiley, New York, 1950) p. 139.

    Google Scholar 

  5. A. G. Evans,Phil. Mag. 22 (1970) 841.

    Google Scholar 

  6. J. Congleton andN. J. Petch,Acta Metallurgica 14 (1966) 1179.

    Google Scholar 

  7. J. L. Daniel andS. Takahashi, “Proc 1st International Conf. on Fracture”, Sendai (eds T. Yokobori, T. Kawasaki, and J. L. Swedlow, 1965) p. 1987.

  8. A. G. Evans andR. W. Davidge,Phil. Mag. 20 (1969) 373.

    Google Scholar 

  9. S. C. Carniglia,Mater. Sci. Res. 3 (1966) 425.

    Google Scholar 

  10. R. L. Moon andP. L. Pratt,Proc. Brit. Ceram. Soc. 15 (1970) 203.

    Google Scholar 

  11. B. Swaroop andK. Tangri,Trans. Met. Soc. AIME,245 (1969) 61.

    Google Scholar 

  12. G. B. Greenough, “Progress in Metal Physics” (Pergamon Press, London, 1952) p. 190.

    Google Scholar 

  13. P. J. Worthington andE. Smith,Acta Metallurgica 12 (1964) 1277.

    Google Scholar 

  14. G. Baro andE. Hornbogen, “Quantitative Relation Between Properties and Microstructures”, eds D. G. Brandon and A. Rosen, (Israel University Press, Haifa, 1969) p. 457.

    Google Scholar 

  15. J. C. Suits andB. Chalmers,Acta Metallurgica 9 (1961) 854.

    Google Scholar 

  16. J. C. M. Li,Trans, Met. Soc. AIME 227 (1963) 239.

    Google Scholar 

  17. C. W. Price andJ. P. Hirth,Mat. Sci. Eng. 9 (1972) 15.

    Google Scholar 

  18. N. J. Petch,J. Iron Steel Inst. 173 (1953) 25.

    Google Scholar 

  19. A. H. Cottrell,Trans. Met. Soc. AIME 212 (1958) 192.

    Google Scholar 

  20. H. Conrad, S. Fernerstein, andL. Rice,Mat. Sci. Eng. 2 (1967) 157.

    Google Scholar 

  21. M. F. Ashby,Phil. Mag. 21 (1970) 399.

    Google Scholar 

  22. J. C. M. Li. andY. T. Chou,Met. Trans. 1 (1970) 1145.

    Google Scholar 

  23. R. C. Ku andT. L. Johnston,Phil. Mag. 9 (1964) 231.

    Google Scholar 

  24. E. Smith andJ. T. Barnby,Met. Sci. J. 1 (1967) 56.

    Google Scholar 

  25. C. Zener, “Fracturing of Metals” (American Society for Metals, 1948) p. 3.

  26. Y. T. Chou andR. W. Whitmore,J. Appl. Phys. 32 (1961) 1920.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, M.N., Lloyd, D.J. & Tangri, K. Microyield and fracture in polycrystalline MgO. J Mater Sci 8, 116–122 (1973). https://doi.org/10.1007/BF00755590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00755590

Keywords

Navigation