Skip to main content
Log in

Path integral monte carlo simulations of thin4He films on a H2 surface

  • Rapid Communications
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Atomatically thin4He films of up to three monolayers on molecular hydrogen (1,1,1) surfaces are studied at T = 0.5 K, using path integral Monte Carlo. We compute the binding energy of4He to the H2 substrate as a function of4He coverage and obtain evidence of the prewetting transition. Density profiles perpendicular to the4He-H2 interface are obtained, as well as the zero point motion and effective mass of4He parallel to the substrate surface. The superfluid density of4He vs. coverage is calculated, and the intermediate scattering function is computed, from which we estimate the speed of third sound. Finally, we calculate the vorticity-vorticity correlation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Rudnick and J. C. Fraser,J. Low. Temp. Phys. 3, 225 (1970).

    Google Scholar 

  2. E. S. Sabisky and C. H. Anderson,Phys. Rev. A 7, 790 (1973).

    Google Scholar 

  3. V. L. Ginzburg and L. P. Pitaevskii,Soviet Phys.-JETP 7, 858 (1958).

    Google Scholar 

  4. Yu. G. Mamaladze,Soviet Phys.-JETP 25, 479 (1967).

    Google Scholar 

  5. D. Bergman,Phys. Rev. 188, 370 (1969).

    Google Scholar 

  6. J. F. Annett, M. W. Cole, P. B. Shaw, and R. M. Stratt,J. Low Temp. Phys. 84, 1 (1991).

    Google Scholar 

  7. L. Pierre, H. Guignes, and C. Lhuillier,J. Chem. Phys. 82, 496 (1985).

    Google Scholar 

  8. W. Meyer, P. C. Hariharan, and W. Kutzelnigg,J. Chem. Phys. 73, 1880 (1980).

    Google Scholar 

  9. M. A. Paalanen and Y. Iye,Phys. Rev. Lett. 55, 1761 (1985).

    Google Scholar 

  10. D. Cieslikowski, A. J. Dahm, and P. Leiderer,Phys. Rev. Lett. 58, 1751 (1987).

    Google Scholar 

  11. P. J. Shirron and J. M. Mochel,Phys. Rev. Lett. 67, 1118 (1991).

    Google Scholar 

  12. J. G. Brisson, J. C. Mester, and I. F. Silvera,Phys. Rev. 44, 12453 (1991).

    Google Scholar 

  13. D. M. Ceperley and E. L. Pollock, “Path-Integral Computation Techniques for Superfluid4He” in: S. Caracciolo and A. Fabrocini (eds.),Proceedings of the Elba Conference on Monte Carlo Methods in Theoretical Physics, 1990, ETS Editrice, Pisa, 1992, p. 35.

    Google Scholar 

  14. M. Wagner and D. M. Ceperley,J. Low. Temp. Phys. 94, 161 (1994).

    Google Scholar 

  15. E. Cheng, Milton W. Cole, W. F. Saam, and J. Treiner,Phys. Rev. Lett. 67, 1007 (1991).

    Google Scholar 

  16. E. Cheng, Milton W. Cole, and P. B. Shaw,J. Low Temp. Phys. 82, 49 (1991).

    Google Scholar 

  17. P. A. Whitlock, G. V. Chester, and M. H. Kalos,Phys. Rev. B 38, 2418 (1988).

    Google Scholar 

  18. J. M. Kosterlitz and D. J. Thoules,J. Phys. C. 6, 1181 (1973).

    Google Scholar 

  19. K. R. Atkins,Physica 23, 1143 (1957).

    Google Scholar 

  20. J. L. Epstein and E. Krotscheck,Phys. Rev. B 37, 1666 (1988).

    Google Scholar 

  21. E. Krotscheck and C. J. Tymczak,Phys. Rev. B 45, 217 (1992).

    Google Scholar 

  22. B. E. Clements, E. Krotscheck, and H. J. Lauter,Phys. Lett. 70, 1287 (1993).

    Google Scholar 

  23. M.-T. Chen, J. M. Roesler, and J. M. Mochel,J. Low T. Phys. 89, 125 (1992).

    Google Scholar 

  24. S.-C. Zhang,Vortex Anti-Vortex Lattice in Superfluid Films Research Report, IBM Research Division,RJ 9184 (81492) January 20, 1993.

  25. R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and G. T. McConville,J. Chem. Phys. 70, 4330 (1979).

    Google Scholar 

  26. I. F. Silvera and V. V. Goldman,J. Chem. Phys. 69, 4209 (1978).

    Google Scholar 

  27. E. L. Pollock and D. M. Ceperley,Phys. Rev. B 36, 8343 (1987).

    Google Scholar 

  28. D. M. Ceperley and E. L. Pollock,Phys. Rev. Lett. 56, 351 (1986).

    Google Scholar 

  29. D. M. Ceperley and E. L. Pollock,Phys. Rev. B 39, 2084 (1989).

    Google Scholar 

  30. P. Sindzingre, D. M. Ceperley, and M. L. Klein,Phys. Rev. Lett. 67, 1871 (1991).

    Google Scholar 

  31. D. Scharf, M. L. Klein, and G. J. Martyna,J. Chem. Phys. 97, 3590 (1992).

    Google Scholar 

  32. R. Shafer and R. G. Gordon,J. Chem. Phys. 58, 5422 (1973).

    Google Scholar 

  33. E. Cheng, G. Ihm, and Milton W. Cole,J. Low Temp. Phys. 74, 519 (1989).

    Google Scholar 

  34. C. G. Paine and G. M. Seidel,Phys. Rev. B 46, 1043 (1992).

    Google Scholar 

  35. I. F. Silvera,Rev. Mod. Phys. 52, 393 (1980).

    Google Scholar 

  36. M.-T. Chen and J. M. Mochel, private communication, May (1993).

  37. J. A. Nelder and R. Mead,Computer J. 7, 308 (1965).

    Google Scholar 

  38. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,Numerical Recipes,The Art of Scientific Computing, Cambridge University Press, 1989.

  39. E. Cheng, Milton W. Cole, W. F. Saam, and J. Treiner,Phys. Rev. B 46, 13967 (1992).

    Google Scholar 

  40. E. Cheng and Milton W. Cole,Phys. Rev. B 38, 987 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, M., Ceperley, D.M. Path integral monte carlo simulations of thin4He films on a H2 surface. J Low Temp Phys 94, 185–217 (1994). https://doi.org/10.1007/BF00755424

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00755424

Keywords

Navigation