Advertisement

Journal of Low Temperature Physics

, Volume 94, Issue 1–2, pp 125–144 | Cite as

Nucleation of Bubbles on quantized vortices in helium-4

  • Humphrey J. Maris
Rapid Communications

Abstract

We consider the properties of vortices in superfluid helium-4 at negative pressure. Based on a simple density-functional model, we first calculate the density profile in the vicinity of a vortex. We then determine the negative pressure at which the vortex becomes unstable against a uniform radial expansion all along its length. This instability occurs at −6.9 bars. We then calculate the pressure-dependence of the energy Δ Enuc required to nucleate a bubble on the vortex. The results of this calculation are used to estimate the effect of quantized vortices on the rate at which bubbles are nucleated in superfluid helium at negative pressure.

Keywords

Vortex Magnetic Material Negative Pressure Density Profile Radial Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Early measurements were made by J. W. Beams,Phys. Rev. 104, 880 (1956), and A. D. Misener and G. R. Herbert,Nature 177, 946 (1956).Google Scholar
  2. 2.
    J. C. Fisher,J. Appl. Phys. 19, 1062 (1948).Google Scholar
  3. 3.
    H. J. Maris and Q. Xiong,Phys. Rev. Lett. 63, 1078 (1989).Google Scholar
  4. 4.
    Q. Xiong and H. J. Maris,J. Low Temp. Phys. 77, 347 (1989).Google Scholar
  5. 6.
    R. D. Finch, R. Kagiwada, M. Barmatz, and I. Rudnick,Phys. Rev. 134 A1425 (1964).Google Scholar
  6. 7.
    R. D. Finch and T. G. Wang,J. Acoust. Soc. Am. 39, 511 (1966).Google Scholar
  7. 8.
    R. D. Finch, T. G. Wang, R. Kagiwada, M. Barmatz, and I. Rudnick,J. Acoust. Soc. Am. 40, 211 (1966).Google Scholar
  8. 9.
    M. H. Edwards, R. M. Cleary, and W. M. Fairbank, inQuantum Fluids (North-Holland, Amsterdam, 1966), p. 140.Google Scholar
  9. 10.
    R. D. Finch and M. L. Chu,Phys. Rev. 161, 202 (1967).Google Scholar
  10. 11.
    P. D. Jarman and K. J. Taylor,J. Low Temp. Phys. 2, 389 (1970).Google Scholar
  11. 12.
    P. M. McConnell, M. L. Chu, and R. D. Finch,Phys. Rev. 1, 411 (1970).Google Scholar
  12. 13.
    A. Mossé, M. L. Chu, and R. D. Finch,J. Acoust. Soc. Am. 47, 1258 (1970).Google Scholar
  13. 14.
    E. A. Neppiras and R. D. Finch,J. Acoust. Soc. Am. 52, 335 (1971).Google Scholar
  14. 15.
    J. R. Shadley and R. D. Finch,Phys. Rev. A 3, 780 (1971).Google Scholar
  15. 16.
    P. L. Marston,J. Low Temp. Phys. 25, 383 (1976).Google Scholar
  16. 17.
    H. C. Dhingra and R. D. Finch,J. Acoust. Soc. Am. 59, 19 (1976).Google Scholar
  17. 18.
    D. E. Daney,Cryogenics 28, 132 (1988).Google Scholar
  18. 19.
    J. A. Nissen, E. Bodegom, L. C. Brodie, and J. S. Semura,Adv. Cryo. Engineering 33, 999 (1988);Phys. Rev. B 40, 617 (1989).Google Scholar
  19. 20.
    Q. Xiong and H. J. Maris,J. Low Temp. Phys. 82, 105 (1991).Google Scholar
  20. 21.
    V. A. Akulichev and Y. Y. Boguslavskii,Sov. Phys. JETP 35, 1012 (1972).Google Scholar
  21. 22.
    R. B. Dean,J. Appl. Phys. 15, 446 (1944).Google Scholar
  22. 23.
    F. Dalfovo, G. Renversez, and J. Treiner,J. Low Temp. 89, 425 (1992).Google Scholar
  23. 24.
    F. Dalfovo,Phys. Rev. B 46, 5482 (1992).Google Scholar
  24. 25.
    B. M. Abraham, Y. Eckstein, J. B. Ketterson, M. Kuchnir, and P. R. Roach,Phys. Rev. A 1, 250 (1970).Google Scholar
  25. 26.
    W. M. Whitney and C. E. Chase,Phys. Rev. Lett. 9, 243 (1962).Google Scholar
  26. 27.
    H. J. Maris,Phys. Rev. Lett. 66, 45 (1991).Google Scholar
  27. 28.
    H. J. Maris, in “Excitations in Liquid Helium at Negative Pressures,” inNato Advanced Research Workshop on Excitations in 2D and 3D Quantum Fluids edited by H. J. Lauter and A. F. G. Wyatt (Plenum, New York, 1991), p. 107.Google Scholar
  28. 29.
    J. R. Eckardt, D. O. Edwards, S. Y. Shen, and F. M. Gasparini,Phys. Rev. B 16, 1944 (1977).Google Scholar
  29. 30.
    M. Iino, M. Suzuki, and A. Ikushima,J. Low Temp. Phys. 61, 155 (1985).Google Scholar
  30. 31.
    C. Ebner and W. F. Saam,Phys. Rev. Phys. Rev. B 12, 923 (1975).Google Scholar
  31. 32.
    L. B. Lurio, T. A. Rabedeau, P. S. Pershan, I. F. Silvera, M. Deutsch, S. D. Kosowsky, and B. M. Ocko,Phys. Rev. Lett. 68, 2628 (1992).Google Scholar
  32. 33.
    Using the earlier version of the equation of state we had obtained the value of −6.5 bars for Pv. See Ref. 4..Google Scholar
  33. 34.
    Using a more elaborate density-functional scheme F. Dalfovo has obtained the value −8 bars forP v. See Ref. 24..Google Scholar
  34. 35.
    For an example of the use of this model see Ref. 23..Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Humphrey J. Maris
    • 1
  1. 1.Department of PhysicsBrown UniversityProvidence

Personalised recommendations