Journal of Low Temperature Physics

, Volume 102, Issue 1–2, pp 133–155 | Cite as

Experimental verification and quantitative analysis of the temperature (phonon) breakdown phenomenon in the high-field magnetoresistivity of compensated metals

  • V. V. Marchenkov
  • H. W. Weber
  • A. N. Cherepanov
  • V. E. Startsev


The transverse magnetoresistivity of tungsten single crystals with resistivity ratios of up to 80.000 was measured in the temperature range from 4.2 to 60 K and in magnetic fields up to 15 T. The experiments show that the temperature (phonon) breakdown effect occurs in compensated metals as a result of strong electron-phonon scattering. This leads to a transformation of closed electron orbits into quasi-open ones and, consequently, to anomalies of the galvanomagnetic properties. A large anisotropy of the magnetoresistivity (up to 83%), i.e. a dependence of resistivity on current direction, is observed in a cubic crystal. The power index n in the field dependence of the magnetoresistivity decreases and the characteristic intersheet gap temperatures T0, which are determined from an exponential temperature dependence of the magnetoresistivity, “formally” depend on magnetic field. A detailed analysis of the experimental results allows us to explain all these anomalies by the temperature breakdown effect and to obtain new information on this phenomenon in metals at high magnetic fields.


Magnetic Field Tungsten Current Direction Field Dependence Experimental Verification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Lifshitz, M. Ya. Azbel', and M. I. Kaganov,Electron Theory of Metals, Consultants Bureau (New York, 1973).Google Scholar
  2. 2.
    J. M. Ziman,Electrons and Phonons, Oxford University Press (Oxford, 1960).Google Scholar
  3. 3.
    C. M. Hurd,Hall Effect in Metals and Alloys, Plenum Press (New York-London, 1972).Google Scholar
  4. 4.
    M. H. Cohen and L. M. Falicov,Phys. Rev. Lett. 7, 231 (1961).Google Scholar
  5. 5.
    N. E. Alekseevskii and V. I. Nizhankovskii, inConduction Electrons (in Russian), Nauka (Moscow, 1985).Google Scholar
  6. 6.
    R. N. Gurzhi and A. I. Kopeliovich,Sov. Phys. Usp. 24, 17 (1981).Google Scholar
  7. 7.
    N. V. Volkenshtein, V. P. Dyakina, V. E. Startsev, A. N. Cherepanov, V. I. Cherepanov, and M. Glin'skii,Sov. J. Low Temp. Phys. 12, 582 (1986).Google Scholar
  8. 8.
    V. V. Marchenkov, V. E. Startsev, A. N. Cherepanov, C. Czurda, and H. W. Weber,Physica B 194–196, 1159 (1994).Google Scholar
  9. 9.
    V. V. Marchenkov, A. N. Cherepanov, V. E. Startsev, C. Czurda, and H. W. Weber,J. Low Temp. Phys. 98, 425 (1995).Google Scholar
  10. 10.
    N. V. Volkenshtein, V. E. Startsev, and V. I. Cherepanov,Phys. Stat. Sol. (b) 89, K53 (1978).Google Scholar
  11. 11.
    A. N. Cherepanov, V. V. Marchenkov, V. E. Startsev, N. V. Volkenshtein, and M. Glin'skii,J. Low Temp. Phys. 80, 135 (1990).Google Scholar
  12. 12.
    V. G. Peschanskii and M. Ya. Azbel',Sov. Phys. JETP 28, 1045 (1969).Google Scholar
  13. 13.
    V. N. Morgoon, R. N. Gurzhi, A. I. Kopeliovich, V. A. Bondar', and N. N. Chebotaev, unpublished.Google Scholar
  14. 14.
    V. V. Boiko and V. A. Gasparov,Sov. Phys. JETP 34, 1266 (1972).Google Scholar
  15. 15.
    H. Landolt and R. Börnstein,Numerical Data and Functional Relationships in Science and Technology, Springer Verlag (Berlin-Heidelberg-New York, 1981), Vol. 13a, p. 458.Google Scholar
  16. 16.
    V. E. Startsev, V. P. Dyakina, V. I. Cherepanov, N. V. Volkenshtein, R. Sh. Nasyrov, and V. G. Manakov,Sov. Phys. JETP 52, 675 (1980).Google Scholar
  17. 17.
    A. Lerose and B. N. Brockhouse,Can. J. Phys. 54, 1819 (1976).Google Scholar
  18. 18.
    D. Bolef and J. de Clerk,J. Appl. Phys. 33, 2311 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • V. V. Marchenkov
    • 1
    • 2
    • 3
  • H. W. Weber
    • 2
  • A. N. Cherepanov
    • 1
  • V. E. Startsev
    • 1
  1. 1.Institute of Metal PhysicsEkaterinburgRussia
  2. 2.Atominstitut der Österreichischen UniversitätenWienAustria
  3. 3.International Laboratory of High Magnetic Fields and Low TemperaturesWroclawPoland

Personalised recommendations