Journal of Low Temperature Physics

, Volume 102, Issue 1–2, pp 73–94 | Cite as

Role of edge superconducting states in trapping of multi-quanta vortices by microholes. Application of the bitter decoration technique

  • A. Bezryadin
  • B. Pannetier


The Bitter decoration technique is used to study the trapping of single and multiple quanta vortices by a lattice of circular microholes. By keeping a thin superconducting layer (the bottom) inside each hole we are able to visualise the trapped vortices. From this we determine, for the first time, the filling factor FF, i.e. the number of vortices captured inside a hole. In all cases the sample is cooled at a constant field before making the decoration. Two qualitatively different states of the vortex crystal are observed: (i) In case when the interhole distance is much larger than the coherence length, the filling factor averaged over many identical holes (〈(FF〉)) is a stepwise function of the magnetic flux (of the external field) through the hole, because each hole captures the same number of vortices. The density of fluxoids inside the openings is higher than in the uniform film, but much lower than it should be in the state of equilibrium. We claim that the number of trapped vortices is determined by the edge superconducting states which appear around each hole at the modified third critical fieldH c3 * >H c2 . BelowH c2 such states produce a surface barrier of a new type. This barrier for the vortex entrance and exit is due to the strong increase of the order parameter near the hole edge. It keeps constant the number of captured vortices during the cooling at a fixed field, (ii) An increase of the hole density or of the hole radius initiates a sharp redistribution of fluxoids: all of them drop inside holes. This first order transition leads to a localization of all vortices and consequently to a qualitative change of the transport properties (TAFF in our case). In the resulting new state the filling factor is not any more the same for neighbouring holes and its averaged value is equal to the frustration of the hole network.


Vortex Filling Factor Hole Density Superconducting Layer Fixed Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. S. Mkrtchyan and V. V. Shmidt,Soviet Phys. JETP 34, 195 (1972).Google Scholar
  2. 2.
    B. Khalfin and B. Ya. Shapiro,Physica C 202, 393 (1992).Google Scholar
  3. 3.
    A. I. Buzdin,Phys. Rev. B 47, 11416 (1993).Google Scholar
  4. 4.
    L. D. Cooley and A. M. Grishin,Phys. Rev. Lett. 74, 2788 (1995).Google Scholar
  5. 5.
    A. T. Fiory, A. F. Hebard, and S. Somekh,Appl. Phys. Lett. 32, 73 (1978).Google Scholar
  6. 6.
    M. Baertet al, Europhysics Letters 29, 157 (1995).Google Scholar
  7. 7.
    Yu. N. Ovchinnikov,Sov. Phys. JETP 52, 923 (1980).Google Scholar
  8. 8.
    P. G. De Gennes,Superconductivity of Metals and Alloys, W. A. Benjamin, Inc., New York (1966).Google Scholar
  9. 9.
    Yu. N. Ovchinnikov,Sov. Phys. JETP 52, 755 (1980).Google Scholar
  10. 10.
    A. Bezryadin and B. Pannetier,J. of Low Temp. Phys. 98, 251 (1995).Google Scholar
  11. 11.
    D. Saint-James and P. G. de Gennes,Phys. Lett. 7, 306 (1963).Google Scholar
  12. 12.
    H. J. Fink,Phys. Rev. Lett. 14, 309 (1965).Google Scholar
  13. 13.
    B. Pannetier, J. Chaussy, and R. Rammal,Phys. Rev. Lett. 53, 1845 (1984); B. Pannetier,in Quantum Coherence in Mesoscopic Systems, Plenum, New York, 1991.Google Scholar
  14. 14.
    K. Runge and B. Pannetier,Europhys. Lett. 24, 737 (1993).Google Scholar
  15. 15.
    A. Bezryadin, Yu. N. Ovchinnikov, and B. Pannetier, to appear inPhys. Rev. B. Google Scholar
  16. 17.
    K. Runge, Ph.D. Thesis, Joseph Fourier University, Grenoble (1993).Google Scholar
  17. 18.
    A. Bezryadin, A. Buzdin, and B. Pannetier,Phys. Rev. B 51, 3718 (1995).Google Scholar
  18. 19.
    The coherence length atT = T c3 * ifn ∼ 1 is approximately equal to the hole radius: ζ ∼R. See the phase diagram for a single hole in Ref. 18.Google Scholar
  19. 20.
    L. Landau and E. Lifshitz,Statistical Physics (Pergamon Press, London, 1979).Google Scholar
  20. 21.
    M. Tinkham,Introduction to Superconductivity (McGraw-Hill, New York, 1975), Chap. 4-10.2, p. 135.Google Scholar
  21. 22.
    A. Bezryadin, A. Buzdin, and B. Pannetier, to appear in proceedings “Macroscopic Quantum Phenomena and Coherence in Superconducting Networks,” 2–5 March 1995, Frascati, Italy.Google Scholar
  22. 23.
    M. Tinkham,Introduction to Superconductivity (McGraw-Hill, New York), Chap. 5-7.1, p. 175; P. M. Keset al., Supercond. Sci. Technol. 1, 242 (1989).Google Scholar
  23. 24.
    S. P. Benzet al, Phys. Rev. B 38, 2869 (1988).Google Scholar
  24. 25.
    M. Baertet al, Phys. Rev. Lett.74, 3269 (1995)Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • A. Bezryadin
    • 1
  • B. Pannetier
    • 1
  1. 1.CRTBT-CNRSGrenobleFrance

Personalised recommendations