Journal of Low Temperature Physics

, Volume 95, Issue 1–2, pp 251–255 | Cite as

Quantum Monte Carlo simulations of Hubbard type models

  • F. F. Assaad
  • R. Preuss
  • A. Muramatsu
  • W. Hanke
Electronic Structure


We present a review of recent Quantum Monte-Carlo results for one- and twodimensional Hubbard models. In one-dimension spectral properties are calculated with the maximum entropy method. At small doping, the one-particle excitations are characterized by a dispersive cosine-like band. Two different velocities for charge and spin-excitations are obtained which lead to a conformal charge c = 0.98 ± 0.05. In two-dimensions, we concentrate on two methods to detect superconducting ground states without prior knowledge of the symmetry of the underlying pair-pair correlations: flux quantization and the temperature derivative of the superfluid density. Both methods are based on extensions of quantum Monte-Carlo algorithms to incorporate magnetic fields. Our main results include numerical data which a) confirm the Kosterlitz-Thouless transition in the attractive Hubbard model b) show the absence of superconductivity in the quarter filled repulsive Hubbard model, and finally c) show no sign of a Kosterlitz-Thouless type transition in the three-band Hubbard model up to βtpd = 12.5 and hole doping δ = 0.25.


Hubbard Model Temperature Derivative Maximum Entropy Method Flux Quantization Hole Doping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.H. Lieb and F.Y. Yu, PRL20, 1445 (1965).Google Scholar
  2. 2.
    H. Frahm and V.E. Korepin, PRB42, 10553 (1990).Google Scholar
  3. 3.
    S. Sorella and A. Parola, J. Phys. Cond. Matter4 2589 (1992).Google Scholar
  4. 4.
    R. Preuss et al. Würzburg preprint 1993.Google Scholar
  5. 5.
    N. Byers and C.N. Yang, PRL7, 46, (1961).Google Scholar
  6. 6.
    C.N. Yang, Reviews of Mod. Phys.34, 694 (1962).Google Scholar
  7. 7.
    R.T. Scalettar et al. PRL62, 1407, (1989).Google Scholar
  8. 8.
    F.F. Assaad, W. Hanke and D.J. Scalapino, PRL71, 1915 (1993).Google Scholar
  9. 9.
    J.M. Kosterlitz and D.J. Thouless, J. Phys. C.6, 1181, (1973).Google Scholar
  10. 10.
    D.R. Nelson and J.M. Kosterlitz, PRL39, 1201 (1977).Google Scholar
  11. 11.
    A. Moreo and D.J. Scalapino, PRL66 946, (1991).Google Scholar
  12. 12.
    G. Dopfet al. PRL68, 353, (1992), PRL68, 2082, (1992), Europhys. Lett.17 559 (1992).Google Scholar
  13. 13.
    F.F. Assaad, W. Hanke and D.J. Scalapino to appear in PRB.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • F. F. Assaad
    • 1
  • R. Preuss
    • 1
  • A. Muramatsu
    • 1
  • W. Hanke
    • 1
  1. 1.Physikalisches InstitutUniversität WürzburgWürzburgGermany

Personalised recommendations