Skip to main content
Log in

Dependence of room temperature fracture strength on strain-rate in sapphire

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single crystal,c-axis oriented sapphire filaments have been tension tested as a function of surface conditions and environment, and as a function of strain-rate. Filaments in the as-grown condition were shown to have failure strengths independent of the amount of water in the environment when tested at 0.002 min−1. This independence was correlated with fractographic determinations showing internal nucleation of fracture. In contrast, introduction of surface flaws was shown to reduce the strength to a level dependent upon the moisture content of the test environment. Filaments having as-grown surfaces were shown to fail at strength levels dependent upon the strain-rate. When the latter was increased stepwise in order of magnitude from 0.002 to 2.0 min−1, the fracture strength increased by a total of ∼ 70 kg mm−2, or ∼ 30% of the lowest average value. It is argued that the latter behaviour is different from static fatigue and that it is consistent with the Orowan model of subcritical crack extension in brittle materials. Experimental data are used to calculate background flaw sizes in the range of 0.22 to 0.39 μm and maximum crack extension at the slowest rate (0.002 min−1) of 0.15 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Griffith,Trans. Roy. Soc. A221 (1921) 163.

    Google Scholar 

  2. G. R. Irwin, “Fracturing of Metals” (A.S.M., Cleveland, Ohio, 1948) p. 147.

    Google Scholar 

  3. E. Orowan,Rep. Prog. Phys. 12 (1949) 185.

    Google Scholar 

  4. Idem, Weld. J. 34 (1955) 157

    Google Scholar 

  5. W. B. Hillig andR. J. Charles, “High Strength Materials” (Ed. V. H. Zackay) (Wiley, New York, 1965) p. 682.

    Google Scholar 

  6. R. E. Mould andR. D. Southwick,J. Amer. Ceram. Soc. 42 (1959) 542.

    Google Scholar 

  7. Idem, ibid 42 (1959) 582.

    Google Scholar 

  8. R. J. Charles andR. R. Shaw, General Electric Laboratory Report No. 62-RL-3081M (1962), General Electric Co. of America.

  9. S. M. Wiederhorn,Inter. J. Fracture Mech. 4 (1968) 171.

    Google Scholar 

  10. Idem, “Environmental Sensitive Mechanical Behavior of Materials” (Eds. A. R. C. Westwood and N. S. Stoloff) (Gordon and Breach, New York, 1966).

    Google Scholar 

  11. S. M. Wiederhorn,J. Amer. Ceram. Soc. 50 (1967) 407.

    Google Scholar 

  12. J. Congleton andN. J. Petch,Acta. Metallurgica 14 (1966) 1179.

    Google Scholar 

  13. J. Congleton, N. J. Petch, andS. A. Shiels,Phil. Mag. 19 (1969) 1795.

    Google Scholar 

  14. H. E. Labelle,Mat. Res. Bull. 6 (1971) 571.

    Google Scholar 

  15. G. F. Hurley andJ. T. A. Pollock,Met. Trans. 3 (1972) 397.

    Google Scholar 

  16. J. T. A. Pollock,J. Mater. Sci. 7 (1972) 631.

    Google Scholar 

  17. Idem, ibid 7 (1972) 649.

    Google Scholar 

  18. G. F. Hurley,ibid 7 (1972) 471.

    Google Scholar 

  19. A. H. Heuer,Proc. Brit. Ceram. Soc. 15 (1970) 173.

    Google Scholar 

  20. H. E. Labelle andG. F. Hurley,S.A.M.P.E. Journal 6 (1970) 17.

    Google Scholar 

  21. F. C. Mallinder andB. A. Proctor,Phil. Mag. 13 (1966) 197.

    Google Scholar 

  22. M. L. Kronberg,J. Amer. Ceram. Soc. 45 (1962) 274.

    Google Scholar 

  23. H. Conrad, G. Stone, andK. Janowski,Trans. Met. Soc. AIME 233 (1965) 889.

    Google Scholar 

  24. E. Orowan, “Fracture” (Eds. B. L. Averbach, D. K. Felbeck, G. T. Hahn and D. A. Thomas (MIT Press, Cambridge, Mass., 1959) p. 225.

    Google Scholar 

  25. E. Stofel andH. Conrad,Trans. Met. Soc. AIME 227 (1963) 1053.

    Google Scholar 

  26. R. W. Rice, “Proc. of the Symposium of Ceramics in Severe Environments” (Eds. W. W. Kriegel and H. Palmour III) (Plenum Press, New York, 1971) p. 195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollock, J.T.A., Hurley, G.F. Dependence of room temperature fracture strength on strain-rate in sapphire. J Mater Sci 8, 1595–1602 (1973). https://doi.org/10.1007/BF00754895

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754895

Keywords

Navigation