Skip to main content
Log in

Calculation of temperature behind a shock front in condensed matter by the methods of thermodynamic similarity theory

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. V. F. Anisichkin, “Shock wave data and equations of state for condensed matter,” in: Physical Mechanics of Inhomogeneous Media [in Russian], Inst. of Pure and Appl. Mech., Novosibirsk (1984), p. 142.

    Google Scholar 

  2. V. F. Anisichkin, “Generalized shock adiabats and zero element isotherms,” Fiz. Goreniya Vzryva,15, No. 1, 152–157 (1979).

    Google Scholar 

  3. J. Hirschfelder, C. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids [Russian translation], Izd. Inostr. Lit., Moscow (1961).

    Google Scholar 

  4. L. P. Filippov, Similarity of Substance Properties [in Russian], Izd. Mosk. Univ., Moscow (1976).

    Google Scholar 

  5. V. F. Anisichkin, “Calculation of condensed matter temperature behind the shock front,” Fiz. Goreniya Vzryva,24, No. 1, 75–79 (1988).

    ADS  Google Scholar 

  6. I. M. Voskoboinikov, M. F. Gogulya, and Yu. A. Dolgoborodov, “Shock compression temperature for liquid N2 and Ar,” Dokl. Akad. Nauk SSSR,246, No. 3, 579 (1979).

    ADS  Google Scholar 

  7. V. F. Grigor'ev, S. B. Kormer, O. A. Mikhailova, et al., “Shock compression and shock front brightness temperature in Ar. Electron radiation shielding,” Zh. Éksp. Tekh. Fiz.,88, No. 4, 1271 (1985).

    ADS  Google Scholar 

  8. V. I. Zharkov and V. A. Kalinin, Constitutive Equations for Solids under High Pressure and Temperature [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  9. M. Cowperthwaite and R. Shaw, “CV(T) equation of state for liquids. Calculation of the shock temperature of carbon tetrachloride, nitromethane, and water in the 100-kbar region,” J. Chem. Phys.,53, 555 (1970).

    Article  Google Scholar 

  10. W. J. Nellis, M. Ross, and A. C. Mitchell, “Equation of state of molecular hydrogen and deuterium from shock-wave experiments to 760 kbar,” Phys. Rev. A, Rapid Commun., June 7 (1982).

  11. W. J. Nellis and A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys.,76 (1982).

  12. M. Ross and A. K. McMahan, “Condensed xenon at high pressure,” Phys. Rev.,B21, 1658 (1980).

    Article  ADS  Google Scholar 

  13. M. Van Thiel and B. J. Alder, “Shock compression of liquid hydrogen,” J. Mol. Phys.,10, 427 (1966).

    Article  Google Scholar 

  14. I. Yu. Mal'kov, “Formation of ultrafine diamond phase of carbon under detonation condtions of heterogeneous mixtures,” Fiz. Goreniya Vzryva,27, No. 5, 136–140 (1991).

    Google Scholar 

  15. V. F. Anisichkin, “Development of physical foundation for compaction of ultrafine diamond,” Technical Report, Lavrent'ev Inst. of Hydrodynamics, Dep. in VNTITs, No. 02.9.20.004495 (1991).

Download references

Authors

Additional information

Novosibirsk. Translated from Fizika Goreniya i Vzryva, Vol. 28, No. 6, pp. 80–84, November–December, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolgushin, D.S., Anisichkin, V.F. Calculation of temperature behind a shock front in condensed matter by the methods of thermodynamic similarity theory. Combust Explos Shock Waves 28, 646–649 (1992). https://doi.org/10.1007/BF00754878

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754878

Keywords

Navigation