Skip to main content
Log in

Effect of the Lewis number on the flame propagation mechanism

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature Cited

  1. Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, et al., Mathematical Theory of Combustion and Explosion [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  2. N. P. Drozdov and Ya. B. Zel'dovich, “Diffusion phenomena at the flame propagation limits. An experimental investigation of the flegmatization of explosive carbon monoxide mixtures,” Zh. Fiz. Khim.,17, Issue 3, 134–144 (1943).

    Google Scholar 

  3. Ya. B. Zel'dovich, Theory of Combustion and Gas Detonation [in Russian], Izd. Akad. Nauk SSSR, Moscow-Leningrad (1944).

    Google Scholar 

  4. V. I. Kokochashvili, “Combustion characteristics of a hydrogen-bromine mixture,” Zh. Fiz. Khim.,25, Issue 4, 444–452 (1951).

    Google Scholar 

  5. G. I. Barenblatt, Ya. B. Zel'dovich, and A. G. Istratov, “Thermodiffusional stability of a laminar flame,” Prikl. Mekh. Tekh. Fiz., No. 4, 21–26 (1962).

    Google Scholar 

  6. G. I. Sivashinsky, “Diffusional-thermal theory of cellular flames,” Combust. Sci. Tech.,15, 137–146 (1977).

    Google Scholar 

  7. A. P. Aldushin and S. G. Kasparyan, “Thermo-diffusional combustion front instability,” Dokl. Akad. Nauk SSSR,244, No. 1, 67–70 (1979).

    Google Scholar 

  8. A. P. Aldushin, S. G. Kasparyan and K. G. Shkadinskii, “Formation of a two-dimensional structure in the thermodiffusional flame,” ibid.,247, No. 5, 1112–1115 (1979).

    Google Scholar 

  9. G. Joulin and P. Clavin, “Linear stability analysis of nonadiabatic flames: diffusional-thermal model,” Combust. Flame,35, 139–153 (1979).

    Article  Google Scholar 

  10. A. G. Istratov and V. B. Librovich, “The effect of transport processes on the plane flame front stability,” Prikl. Mat. Mekh.,30, No. 3, 451–466 (1966).

    Google Scholar 

  11. G. I. Sivashinsky, “Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations,” Acta Astronautica,4, 1177–1206 (1977).

    Article  MathSciNet  Google Scholar 

  12. P. Pelee and P. Clavin, “Influence of hydrodynamics and diffusion on the stability limits of hydrodynamics and diffusion on the stability limits of laminar premixed flames,” J. Fluid Mech.,124, 219–237 (1982).

    Article  ADS  Google Scholar 

  13. G. Patnaik, K. Kailasanath, E. S. Oran, et al., “Detailed numerical simulations of cellular flames,” Twenty-Second Symp. (Int.) on Combustion, The Combust. Inst., 1517–1526 (1988).

  14. G. M. Makhviladze and S. B. Shcherbak, “A numerical method for the investigation of nonsteady three-dimensional motion of a compressible gas,” Inzh.-Fiz. Zh.,38, No. 3, 528–535 (1980).

    MathSciNet  Google Scholar 

  15. G. M. Makhviladze, V. I. Melikhov, and O. I. Melikhov, “Flame propagation in a closed channel,” Fiz. Goreniya Vzryva,23, No. 3, 30–36 (1987).

    Google Scholar 

  16. G. A. Zulinyan, G. M. Makhviladze, and V. I. Melikhov, “A numerical investigation of the laminar flame shape and structure,” preprint, Akad. Nauk SSSr, Inst. of Probl. in Mechanics, Msocow (1991).

    Google Scholar 

Download references

Authors

Additional information

Moscow. Translated from Fizika Goreniya i Vzryva, Vol. 28, No. 6, pp. 46–51, November–December, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zulinyan, G.A., Makhviladze, G.M. & Melikhov, V.I. Effect of the Lewis number on the flame propagation mechanism. Combust Explos Shock Waves 28, 614–619 (1992). https://doi.org/10.1007/BF00754871

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754871

Keywords

Navigation