Combustion, Explosion and Shock Waves

, Volume 28, Issue 6, pp 614–619 | Cite as

Effect of the Lewis number on the flame propagation mechanism

  • G. A. Zulinyan
  • G. M. Makhviladze
  • V. I. Melikhov
Article

Keywords

Flame Front Flame Propagation Lewis Number Laminar Flame Combustible Mixture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, et al., Mathematical Theory of Combustion and Explosion [in Russian], Nauka, Moscow (1980).Google Scholar
  2. 2.
    N. P. Drozdov and Ya. B. Zel'dovich, “Diffusion phenomena at the flame propagation limits. An experimental investigation of the flegmatization of explosive carbon monoxide mixtures,” Zh. Fiz. Khim.,17, Issue 3, 134–144 (1943).Google Scholar
  3. 3.
    Ya. B. Zel'dovich, Theory of Combustion and Gas Detonation [in Russian], Izd. Akad. Nauk SSSR, Moscow-Leningrad (1944).Google Scholar
  4. 4.
    V. I. Kokochashvili, “Combustion characteristics of a hydrogen-bromine mixture,” Zh. Fiz. Khim.,25, Issue 4, 444–452 (1951).Google Scholar
  5. 5.
    G. I. Barenblatt, Ya. B. Zel'dovich, and A. G. Istratov, “Thermodiffusional stability of a laminar flame,” Prikl. Mekh. Tekh. Fiz., No. 4, 21–26 (1962).Google Scholar
  6. 6.
    G. I. Sivashinsky, “Diffusional-thermal theory of cellular flames,” Combust. Sci. Tech.,15, 137–146 (1977).Google Scholar
  7. 7.
    A. P. Aldushin and S. G. Kasparyan, “Thermo-diffusional combustion front instability,” Dokl. Akad. Nauk SSSR,244, No. 1, 67–70 (1979).Google Scholar
  8. 8.
    A. P. Aldushin, S. G. Kasparyan and K. G. Shkadinskii, “Formation of a two-dimensional structure in the thermodiffusional flame,” ibid.,247, No. 5, 1112–1115 (1979).Google Scholar
  9. 9.
    G. Joulin and P. Clavin, “Linear stability analysis of nonadiabatic flames: diffusional-thermal model,” Combust. Flame,35, 139–153 (1979).CrossRefGoogle Scholar
  10. 10.
    A. G. Istratov and V. B. Librovich, “The effect of transport processes on the plane flame front stability,” Prikl. Mat. Mekh.,30, No. 3, 451–466 (1966).Google Scholar
  11. 11.
    G. I. Sivashinsky, “Nonlinear analysis of hydrodynamic instability in laminar flames. I. Derivation of basic equations,” Acta Astronautica,4, 1177–1206 (1977).CrossRefMathSciNetGoogle Scholar
  12. 12.
    P. Pelee and P. Clavin, “Influence of hydrodynamics and diffusion on the stability limits of hydrodynamics and diffusion on the stability limits of laminar premixed flames,” J. Fluid Mech.,124, 219–237 (1982).CrossRefADSGoogle Scholar
  13. 13.
    G. Patnaik, K. Kailasanath, E. S. Oran, et al., “Detailed numerical simulations of cellular flames,” Twenty-Second Symp. (Int.) on Combustion, The Combust. Inst., 1517–1526 (1988).Google Scholar
  14. 14.
    G. M. Makhviladze and S. B. Shcherbak, “A numerical method for the investigation of nonsteady three-dimensional motion of a compressible gas,” Inzh.-Fiz. Zh.,38, No. 3, 528–535 (1980).MathSciNetGoogle Scholar
  15. 15.
    G. M. Makhviladze, V. I. Melikhov, and O. I. Melikhov, “Flame propagation in a closed channel,” Fiz. Goreniya Vzryva,23, No. 3, 30–36 (1987).Google Scholar
  16. 16.
    G. A. Zulinyan, G. M. Makhviladze, and V. I. Melikhov, “A numerical investigation of the laminar flame shape and structure,” preprint, Akad. Nauk SSSr, Inst. of Probl. in Mechanics, Msocow (1991).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • G. A. Zulinyan
  • G. M. Makhviladze
  • V. I. Melikhov

There are no affiliations available

Personalised recommendations