Advertisement

Journal of Low Temperature Physics

, Volume 103, Issue 5–6, pp 301–311 | Cite as

Non diffusive mobility of solid hydrogen films

  • K. G. Sukhatme
  • J. E. Rutledge
  • P. Taborek
Articles

Abstract

We have used a “hole-burning” technique to study the mobility of thin solid films of H2 and D2 for temperatures between 1.6 K and 5 K. Even at low temperatures where transport through the vapor is negligible, the solid films remain mobile. The transport is thermally activated with an activation energy of 19 K for H2 and 38 K for D2. The time dependence of the regrowth shows that surface transport is not due to simple diffusion.

Keywords

Hydrogen Activation Energy Time Dependence Magnetic Material Thin Solid Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Zhou, M. Rall, J. P. Brison, and N. S. Sullivan,Phys. Rev. B 42, 1929 (1990).Google Scholar
  2. 2.
    H. Meyer,Can. J. Phys. 65, 1453 (1987).Google Scholar
  3. 3.
    D. S. Choi, C. Uebing, and R. Gomer,Surface Science 259, 139 (1991).Google Scholar
  4. 4.
    J. Classen, K. Eschenroder, and G. Weiss,Ann. Physik 4, 1–8 (1995).Google Scholar
  5. 5.
    U. Albrecht, P. Evers, and P. Leiderer,Surface Science 283, 419 (1992).Google Scholar
  6. 6.
    Kimitoshi Kono, Uwe Albrecht, and Paul Leiderer,J. Low Temp. Phys. 82, 279 (1991).Google Scholar
  7. 7.
    R. N. J. Conradt, U. Albrecht, S. Herminghaus, and P. Leiderer,Physica B 194–196, 679–680 (1994).Google Scholar
  8. 8.
    M. Maruyama, M. Bienfait, F. C. Liu, O. E. Vilches, and F. Rieutord,Surface Science 283, 333–337 (1993).Google Scholar
  9. 9.
    Frederick T. Gittes and M. Schick,Phys. Rev. B 30, 209 (1984).Google Scholar
  10. 10.
    Aldo D. Migone, Achim Hofmann, J. G. Dash, and Oscar E. Vilches,Phys. Rev. B 37, 5440 (1988).Google Scholar
  11. 11.
    O. Weis,J. de Physique Colloque 33 (10, Suppl.), C4/49–56 (1972).Google Scholar
  12. 12.
    Wolfgang Friess, Hartmut Schlichting, and Dietrich Menzel.Phys. Rev. Lett. 74, 1147 (1995).Google Scholar
  13. 13.
    M. Sinvani, D. Goodstein, M. Cole, and P. Taborek,Phys. Rev. B 30, 1231 (1984).Google Scholar
  14. 14.
    I. F. Silvera,Rev. Mod. Phys. 52, Part I, 393 (1980).Google Scholar
  15. 15.
    C. Ebner and C. C. Sung,Phys. Rev. A 5, 2625 (1972).Google Scholar
  16. 16.
    E. D. Westre, D. E. Brown, J. Kutzner, and S. M. George,Surface Sci. 294, 185 (1993).Google Scholar
  17. 17.
    E. G. Seebauer, A. C. F. Kong, and L. D. Schmidt,J. Chem. Phys. 88, 6597 (1988).Google Scholar
  18. 18.
    L. Leger and J. F. Joanny,Rep. Prog. Phys. 55, 431 (1992).Google Scholar
  19. 19.
    L. D. Landau and E. M. Lifshitz,Fluid Mechanics, Pergamon Press, 1979.Google Scholar
  20. 20.
    J. F. Van Der Veen and J. W. M. Frenken,Surface Sci. 178, 382 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • K. G. Sukhatme
    • 1
  • J. E. Rutledge
    • 1
  • P. Taborek
    • 1
  1. 1.Department of Physics and AstronomyUniversity of CaliforniaIrvine

Personalised recommendations