Skip to main content
Log in

An investigation of the j-integral method for rating the crack resistance of constructional materials (a review)

  • Experimental Investigation Methods
  • Published:
Soviet materials science : a transl. of Fiziko-khimicheskaya mekhanika materialov / Academy of Sciences of the Ukrainian SSR Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. M. Ya. Leonov and V. V. Panasyuk, “The development of the smallest cracks in a solid body”, Prikl. Mekh.,5, No. 4, 391–401 (1959).

    Google Scholar 

  2. A. A. Wells, “The application of fracture mechanics at and beyond general yielding”, Br. Weld. J.,10, No. 11, 563–570 (1963).

    Google Scholar 

  3. F. J. Witt, “The application of the critical energy procedure for predicting fracture in a thick pressure vessel”, in: A Conference on Practical Application of Fracture Mechanics to Pressure-Vessel Technology, Institution of Mechanical Engineers, London (1971), pp. 163–167.

    Google Scholar 

  4. H. Liebowitz and J. Eftis, “Correcting for nonlinear effects in fracture toughness testing”, Nuc. Eng. Des.,18, 457–467 (1972).

    Google Scholar 

  5. G. P. Cherepanov, “The propagation of cracks in a continuous medium”, Prikl. Mat. Mekh.,31, No. 3, 476–488 (1967).

    Google Scholar 

  6. J. R. Rice, “A path independent integral and the approximate analysis of strain concentration by notches and cracks”, J. Appl. Mech.,35, Ser. E, 287–298 (1968).

    Google Scholar 

  7. G. Libovits and D. L. Jones, “Some investigations of the nonlinear effects of the mechanics of failure”, in: The Mechanics of Deformed Bodies and Structures [in Russian], Mashinostroenie, Moscow (1975), pp. 251–273.

    Google Scholar 

  8. V. V. Panasyuk and S. É. Kovchik, “Determination of the intensity of the failure energy of solid bodies”, Prikl. Mekh.,27, No. 2, 183–189 (1963).

    Google Scholar 

  9. J. Rice, “Mathematical methods in the mechanics of failure”, in: Failure [Russian translation], Vol. 2, Mir, Moscow (1975), pp. 204–335.

    Google Scholar 

  10. J. R. Rice, “Discussion: ‘The path dependence of the J-contour integral’ by G. G. Chell and P. T. Heald”, Int. J. Fract.,11, No. 2, 352–353 (1975).

    Google Scholar 

  11. J. W. Hutchinson, “Singular behaviour at the end of a tensile crack in a hardening material”, J. Mech. Phys. Solids,16, No. 1, 13–31 (1968).

    Google Scholar 

  12. J. W. Hutchinson, “Plastic stress and strain fields at a crack tip”, J. Mech. Phys. Solids,16, No. 5, 337–347 (1968).

    Google Scholar 

  13. J. R. Rice and G. F. Rosengren, “Plane-strain deformation near a crack tip in a power-law hardening material”, J. Mech. Phys. Solids,16, No. 1, 1–12 (1968).

    Google Scholar 

  14. F. McClintock, “Plastic aspects of failure”, in: Failure [Russian translation], Vol. 3, Mir, Moscow (1976), pp. 67–262.

    Google Scholar 

  15. J. A. Begley and J. D. Landes, “The J-integral as a fracture criterion”, in: Fracture Toughness, Part II, ASTM STP 514 (1972), pp. 1–20.

    Google Scholar 

  16. J. D. Landes and J. A. Begley, “The effect of specimen geometry on JIc”, in: Fracture Toughness, Part II, ASTM STP 514 (1972), pp. 24–39.

    Google Scholar 

  17. Standard Method of Test for Plane-Strain Fracture Toughness of Metallic Materials, ASTM E399-72, Annual Book of Standards, Vol. 31 (1973), pp. 960–979.

  18. T. Miyoshi and H. Miyamoto, “Study on JIc fracture criterion”, J. Fac. Eng. Univ. Tokyo,B32, No. 4, 645–653 (1974).

    Google Scholar 

  19. V. Marandet and G. Sanz, “Evaluation of the tensile strength of steels by means of resistance by the methods of the J-integral and the equivalent energy”, Mem. Sci. Rev. Met.,74, No. 5, 267–279 (1977).

    Google Scholar 

  20. J. N. Robinson and A. S. Tetelman, “Comparison of various methods of measuring kic on small precracked bend specimens that fracture after yielding”, Eng. Fract. Mech.,8, No. 2, 301–313 (1976).

    Google Scholar 

  21. T. Saito and I. Uchiyama, “On the toughness of Ni-Cr-Mo steels in the as-quenched condition”, Trans. Iron Steel Inst. Jpn.,16, No. 6, 324–331 (1976).

    Google Scholar 

  22. J. T. Barnby and I. S. Al-Daimalani, “Assessment of the fracture toughness of cast steels, Part I, low alloy steels”, J. Mater. Sci.,11, 1979–1988 (1976).

    Google Scholar 

  23. C. A. Griffis and G. R. Yoder, “Initial crack extension in two intermediate-strength aluminum alloys”, Trans. ASME, H98, No. 2, 152–158 (1976).

    Google Scholar 

  24. D. T. Read and R. P. Reed, “Effects of specimen thickness on fracture toughness of an aluminum alloy”, Int. J. Fract.,13, No. 2, 201–213 (1977).

    Google Scholar 

  25. N. Levy, P. V. Marcal, W. J. Ostergreen, and J. R. Rice, “Small scale yielding near a crack in plane strain: a finite element analysis”, Int. J. Fract. Mech.,7, No. 2, 143–156 (1971).

    Google Scholar 

  26. J. D. Sumpter, D. J. Hayes, G. T. Jones, and C. E. Turner, “Post yield analysis of notch tension pieces”, in: Third International Conference on Fracture, Munich (1973), Paper 1-433.

  27. D. J. Hayes and C. E. Turner, “An application of finite element techniques to post-yield analysis of a practical test specimen”, Int. J. Fract.,10, No. 1, 17–32 (1974).

    Google Scholar 

  28. Toshiro Miyoshi and Hiroshi Miyamoto, “Study of JIc fracture criterion evaluation of fracture toughness by J-integral and COD methods”, J. Fac. Eng. Univ. Tokyo, B33, No. 2, 185–190 (1975).

    Google Scholar 

  29. G. R. Egan, “Compatability of linear elastic (KIc) and general yielding (COD) fracture mechanics”, Eng. Fract. Mech.,5, No. 1, 167–186 (1973).

    Google Scholar 

  30. T. Kanazawa, S. Mashida, and S. Kaneda, “On the J-integral fracture criterion”, J. Fac. Eng. Univ. Tokyo, B33, No. 4, 503–517 (1976).

    Google Scholar 

  31. J. N. Robinson, “An experimental investigation of the effect of specimen type on the crack tip opening displacement and J-integral fracture criteria”, Int. J. Fract.,12, No. 5, 723–737 (1976).

    Google Scholar 

  32. T. Hollstein and J. G. Blanel, “On the relation of the crack opening displacement to the J-integral”, Int. J. Fract.,13, No. 3, 385–390 (1977).

    Google Scholar 

  33. R. J. Bussi, R. C. Paris, J. D. Landes, and J. R. Rice, “J-integral estimation procedures”, in: Fracture Toughness, Part II, ASTM STP 514 (1972), pp. 40–69.

    Google Scholar 

  34. P. Paris and J. Si, “An analysis of the stressed state around a crack”, in: Applied Questions of Fracture Toughness [Russian translation], Mir, Moscow (1968), pp. 64–142.

    Google Scholar 

  35. W. Brown and J. Srawley, Fracture Toughness Tests of Metallic Materials in Plane Deformation [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  36. J. Irwin and P. Paris, “Fundamentals of the theory of growth of a crack and failure”, in: Failure [Russian translation], Mir, Moscow (1976), pp. 17–66.

    Google Scholar 

  37. A. P. Green and B. B. Hundy, “Initial plastic yielding in notch bend tests”, J. Mech. Phys. Solids,4, No.2, 128–144 (1956).

    Google Scholar 

  38. N. J. I. Adams and H. G. Munro, “A single test method for evaluation of the J-integral as a fracture parameter”, Eng. Fract. Mech.,6, No. 1, 119–132 (1974).

    Google Scholar 

  39. J. R. Rice, P. C. Paris, and J. D. Merkle, “Some further results of J-integral analysis and estimates”, in: Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536 (1973), pp. 231–245.

    Google Scholar 

  40. J. D. Landes and J. A. Begley, “Test results from J-integral studies: an attempt to establish a JIc testing procedure”, in: Fracture Analysis, ASTM STP 560 (1974), pp. 170–186.

    Google Scholar 

  41. J. G. Merkle and H. T. Corten, “A J-integral analysis for a compact specimen, considering axial force as well as bending effects”, Trans. ASME,J96, No. 4, 286–292 (1974).

    Google Scholar 

  42. H. P. Keller and D. Munz, “Comparison of different equations for calculation of J from one load-displacement curve for three point bend specimens”, Int. J. Fract.,12, No. 5, 780–784 (1976).

    Google Scholar 

  43. A. I. Vasyutin, “The effect of the stressed state at the apex of a crack on the critical value of the J integral in V95 alloy”, Tr. Mosk. Energ. Inst., No. 294, 51–54 (1976).

    Google Scholar 

  44. J. P. Hlckerson, Jr., “Experimental confirmation of the J-integral as a thin section fracture criterion”, Eng. Fract. Mech.,9, No. 1, 75–85 (1977).

    Google Scholar 

  45. A. Ya. Krasovskii, V. A. Vainshtok, Yu. A. Kashtalyan, V. A. Stepanenko, A. N. Vashchenko, and V. N. Krashko, “The use of the linear and nonlinear mechanics of failure for rating resistance to the development of cracks in 15Kh2NMFA constructional steel”, Probl. Prochn., No. 1, 40–44 (1978).

    Google Scholar 

  46. J. F. Copeland, “The influence of sulfur content on the fracture toughness properties of 2.25% Cr-1% Mo steel”, Trans. ASME,J98, No. 2, 135–142 (1976).

    Google Scholar 

  47. N. G. Ohlson, “Experimental determination of crack initiation and stable crack growth”, in: Seventeenth Polish Solid Mechanics Conference, Szczyrk, 1975, Abstracts, Sec. 1 (1975), pp. 159–160.

  48. C. A. Griffis, “Elastoplastic fracture toughness — a comparison of J-integral and crack opening displacement characterizations”, Trans. ASME,J97, No. 4, 278–283 (1975).

    Google Scholar 

  49. G. N. Nikiforchin, V. V. Kalmykov, and A. Z. Student, “Rating the crack resistance of constructional steels”, Fiz.-Khim. Mekh. Mater., No. 2, 34–38 (1978).

    Google Scholar 

  50. O. M. Romaniv, Yu. V. Zima, and G. V. Karpenko, Electron Fractography of Hardened Steels [in Ukrainian], Naukova Dumka, Kiev (1974).

    Google Scholar 

  51. J. H. Underwood, “JIc test results from two steels”, in: Cracks and Fracture, ASTM STP 601 (1976), pp. 312–329.

    Google Scholar 

  52. D. L. Jones, P. K. Poulose, and H. Liebowitz, “A comparison of the effect of specimen thickness and subcritical crack growth on several nonlinear fracture toughness parameters”, in: Proc. 2nd Int. Conf. Mech. Behav. Mater., Boston, Mass., Sec. 1 (1976), pp. 1252–1257.

  53. A. L. Maistrenko, “An investigation of the subcritical growth of cracks in thin sheet metal in static loading”, Author's Abstract of Candidate's Thesis, Institute of Strength Problems, Kiev (1976).

    Google Scholar 

  54. S. J. Garwood, J. N. Robinson, and C. E. Turner, “The measurement of crack growth resistance curves (R-curves) using the J-integral”, Int. J. Fract.,11, No. 3, 528–530 (1975).

    Google Scholar 

  55. K. B. Broberg, “The importance of stable crack extension in linear and nonlinear fracture mechanics”, in: Prospects Fract. Mech., Leyden (1974), pp. 125–137.

  56. H. P. Keller and D. Munz, “The effect of specimen type on the J-integral at the onset of crack extension”, Int. J. Fract.,13, No. 2, 260–262 (1977).

    Google Scholar 

  57. P. C. Paris, “Discussion”, in: Fracture Toughness, Part II, ASTM STP 514 (1972), pp. 21–23.

    Google Scholar 

  58. V. M. Markochev and E. M. Morozov, “A method of unloading in the experimental mechanics of failure”, Fiz.-Khim. Mekh. Mater., No. 1, 12–22 (1978).

    Google Scholar 

  59. R. M. N. Pelloux, “Crack extension by alternating shear”, Eng. Fract. Mech.,1, No. 4, 697–704 (1970).

    Google Scholar 

  60. J. A. Begley and J. D. Landes, “Serendipity and the J-integral”, Int. J. Fract.,12, No. 5, 764–766 (1976).

    Google Scholar 

  61. W. A. Logsdon and J. A. Begley, “Upper shelf temperature dependence of fracture toughness for four low intermediate strength ferritic steels”, Eng. Fract. Mech.,9, No. 2, 461–470 (1977).

    Google Scholar 

  62. J. D. G. Sumpter, “The prediction of KIc using J and COD from small specimen tests”, Met. Sci.,10, No. 10, 354–356 (1976).

    Google Scholar 

  63. N. E. Dowling and J. A. Begley, “Fatigue crack growth during gross plasticity and the J-integral”, in: Mechanics of Crack Growth, ASTM STP 590 (1976), pp. 83–104.

    Google Scholar 

  64. N. E. Dowling, “Geometry effects and the J-integral approach to elastic-plastic fatigue crack growth”, in: Cracks and Fracture, ASTM STP 601 (1976), pp. 19–32.

    Google Scholar 

  65. C. M. Branco, J. C. Radon, and L. E. Culver, “Fatigue crack growth in gross plasticity cycling”, in: Proc. 2nd Int. Conf. Mech. Behav. Mater., Boston, Mass., 1976, Sec. 1 (1976), pp. 632–635.

  66. C. M. Branco, J. C. Radon, and L. E. Culver, “Elastic-plastic fatigue crack growth under load cycling”, J. Strain Anal.,12, No. 2, 71–80 (1977).

    Google Scholar 

  67. K. M. Nikbin, G. A. Webster, and C. E. Turner, “The relevance of nonlinear fracture mechanics to creep cracking”, in: Cracks and Fracture, ASTM STP 601 (1976), pp. 47–62.

    Google Scholar 

  68. J. D. Landes and J. A. Begley, “A fracture mechanics approach to creep crack growth”, in: Mechanics of Crack Growth, ASTM STP 590 (1976), pp. 128–148.

    Google Scholar 

  69. M. P. Harper and E. G. Ellison, “The use of the C parameter in predicting creep crack propagation rates”, J. Strain Anal.,12, No. 3, 167–179 (1977).

    Google Scholar 

  70. K. Sadananda and P. Shahinian, “Creep crack growth in alloy 718”, Met. Trans.,8A, No. 3, 439–449 (1977).

    Google Scholar 

  71. C. E. Turner and G. A. Webster, “Application of fracture mechanics to creep crack growth”, Int. J. Fract.,10, No. 3, 455–458 (1974).

    Google Scholar 

  72. Siro Kubo, Kuetsugu Odzi, and Keidzi Ogura, “The modern state and problems of investigations of the growth of cracks in creep”, Kikai-no Kenkyu,28, No. 12, 1397–1404 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 14, No. 3, pp. 80–95, May–June, 1978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romaniv, O.N., Nikiforchin, G.N. An investigation of the j-integral method for rating the crack resistance of constructional materials (a review). Mater Sci 14, 296–308 (1978). https://doi.org/10.1007/BF00754772

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754772

Keywords

Navigation