Advertisement

Journal of Materials Science

, Volume 10, Issue 11, pp 1841–1848 | Cite as

An esr study of electron and hole trapping in gamma-irradiated Pyrex

  • G. Brown
Papers

Abstract

Electron and hole resonances, produced by γ-irradiation of Pyrex, are investigated by electron spin resonance (esr) at X-band. It is proposed that the electron traps which generate the narrow g=2.0008 resonance arise, not from the bulk borosilicate structure, but from a sub-microscopic silica glass structure. Growth curves of the trapped electron and hole populations show a two-stage behaviour with increasing dose. In order to explain the growth characteristics in the low-dose region, a non-paramagnetic trapped-electron population is postulated.

Keywords

Polymer Electron Spin Resonance Growth Curve Electron Spin Growth Characteristic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. L. Yasaitis andB. Smaller,Phys. Rev. 92 (1953) 1068.Google Scholar
  2. 2.
    G. Brown,J. Mater. Sci. 10 (1975) 1481.Google Scholar
  3. 3.
    S. Lee andP. J. Bray,J. Chem. Phys. 39 (1963) 2863.Google Scholar
  4. 4.
    D. L. Griscom, P. C. Taylor, D. A. Ware andP. J. Bray,ibid 48 (1968) 5158.Google Scholar
  5. 5.
    P. C. Taylor andD. L. Griscom,ibid 55 (1971) 3610.Google Scholar
  6. 6.
    R. Di Salvo, D. M. Roy andL. N. Mulay,J. Amer. Ceram. Soc. 55 (1972) 536.Google Scholar
  7. 7.
    P. W. Levy,ibid 43 (1960) 389.Google Scholar
  8. 8.
    W. H. Cropper,ibid 45 (1962) 293.Google Scholar
  9. 9.
    R. A. Weeks,J. Appl. Phys. 27 (1956) 1376.Google Scholar
  10. 10.
    R. A. Weeks andC. M. Nelson,ibid 31 (1960) 1555.Google Scholar
  11. 11.
    R. H. Silsbee,ibid,32 (1961) 1459.Google Scholar
  12. 12.
    J. Jortner,J. Chem. Phys. 30 (1959) 839.Google Scholar
  13. 13.
    A. Ekstrom andJ. E. Willard,J. Phys. Chem. 72 (1968) 4599.Google Scholar
  14. 14.
    R. M. Keyser, K. Tsuji andF. Williams, “The Radiation Chemistry of Macromolecules”, Vol. 1 (Academic Press, New York, 1972).Google Scholar
  15. 15.
    G. Brown, unpublished work.Google Scholar
  16. 16.
    H. Lipson andW. Cochran, “The Determination of Crystal Structures” (Bell, London, 1957).Google Scholar
  17. 17.
    K. H. Sun andN. J. Kreidl,Glass Ind. 33 (1952) 589.Google Scholar
  18. 18.
    P. Debye andA. M. Bueche,J. Appl Phys. 20 (1949) 518.Google Scholar
  19. 19.
    W. O. Milligan, H. A. Levy andS. W. Peterson,Phys. Rev. 83 (1951) 226.Google Scholar
  20. 20.
    R. W. Douglas,Glass Ind. 32 (1951) 238.Google Scholar
  21. 21.
    A. F. Prebus andJ. W. Michener,Bull. Amer. Phys. Soc. 27 (1952) 25.Google Scholar
  22. 22.
    R. F. Tucker, “Advances in Glass Technology” (Plenum Press, New York, 1962).Google Scholar
  23. 23.
    J. S. Stroud, J. W. H. Schreurs andR. F. Tucker, “Proceedings of the 7th International Glass Congress, Brussels 1965” (Gordon and Breach, New York, 1966).Google Scholar
  24. 24.
    A. A. Belyustin, Yu. M. Ostanevich, A. M. Pisarevskii, S. B. Tomilov, U. Bai-Shi andL. Cher,Sov. Phys. Sol. Stat. 7 (1965) 1163.Google Scholar
  25. 25.
    J. P. Gosselin, U. Shimony, L. Grodzins andA. R. Cooper,Phys. Chem. Glasses 8 (1967) 56.Google Scholar
  26. 26.
    A. M. Bishay andL. Makar,J. Amer. Ceram. Soc. 52 (1969) 605.Google Scholar
  27. 27.
    M. F. Taragin andJ. C. Eisenstein,J. Non-Cryst. Solids 3 (1970) 311.Google Scholar
  28. 28.
    B. Bleaney andK. W. H. Stevens,Rep. Progr. Phys. 16 (1953) 108.Google Scholar
  29. 29.
    D. L. Griscom,J. Chem. Phys. 55 (1971) 1113.Google Scholar
  30. 30.
    Idem, J. Non-Cryst. Solids 6 (1971) 275.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1975

Authors and Affiliations

  • G. Brown
    • 1
  1. 1.Physics DepartmentRoyal Military College of ScienceShrivenham, SwindonUK

Personalised recommendations