Skip to main content
Log in

Compression of3He by refluxing4He: A model for computing HEVAC effects in3He-4He mixtures

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This article comprises the first part of a study concerning the effect that a flow of gaseous4He has on the concentration distribution of3He atoms in the presence of a super fluid film. We present a simple model in which hydrodynamic effects in the gas phase (diffusion and viscosity), and local thermodynamic equilibrium with a superfluid film are considered. Results are derived and discussed for the simple case in which a heat flow is sustained along a cylindrical tube lined with a helium film. This heat flux drives a superfluid flow in the film, and a corresponding counterflow of4He in the vapour. The pressure, temperature,3He concentration, and film thickness profiles along the tube are computed. Over a wide range of conditions, a dramatic reduction of the3He concentration, a large temperature increase, and a spectacular film thinning towards hotter regions are predicted to result from a heat flow. The results of a series of experiments supporting this model will be presented in a forthcoming article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Matthey, Ph.D. Thesis, Amsterdam (1987).

  2. I. F. Silvera and J. T. M. Walraven,Phys. Rev. Lett. 44, 164 (1980).

    Google Scholar 

  3. M. Mertig, A. V. Levkovitch, V. G. Luppov, and Y. K. Pilipenko,Rev. Sci. Instrum. 63, 2220 (1992).

    Google Scholar 

  4. Various workers have mentioned the possibility that a flowing superfluid film will influence the vapour composition, in particular when measuring the liquid vapour equilibrium phase diagram of helium mixtures. See for example: J. G. Daunt, R. E. Probst, H. L. Johnston, L. T. Aldrich, and A. O. Nier,Phys. Rev. 72, 502 (1947); H, A. Fairbank, C. T. Lane, L. T. Aldrich, and A. O. Nier,Phys. Rev. 73, 729 (1948); D. H. N. Wansink, K. W. Taconis, and F. A. Staas,Physica 22, 449 (1956).

    Google Scholar 

  5. G. Tastevin,J. Low Temp. Phys. 89, 317 (1992).

    Google Scholar 

  6. M. Cornut, P. J. Nacher, and G. Vermeulen,J. Low Temp. Phys. 89, 527 (1992).

    Google Scholar 

  7. M. E. Hayden, M. Cornut, and P. J. Nacher,Physica B194–196, 677 (1994).

    Google Scholar 

  8. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Chapter 7, M. Goeppert Mayer ed., John Wiley & Sons (1964).

  9. Ibid., chapter 8.

  10. V. M. Kontorovitch,Zh. Eksp. Teor. Fiz. 30, 805 (1956) [Translated Sov. Phys. JETP3, 770 (1956)].

    Google Scholar 

  11. D. L. Godstein and P. G. Saffman,J. Low Temp. Phys. 18, 435 (1975).

    Google Scholar 

  12. S. Franchetti,Nuovo Cimenta 10, 622 (1958).

    Google Scholar 

  13. D. T. Eckholm and R. B. Hallock,J. Low Temp. Phys. 42, 339 (1981).

    Google Scholar 

  14. R. de Bruyn Ouboter, J. J. M. Beenakker, and K. W. Taconis,Physica 25, 1162 (1959).

    Google Scholar 

  15. J. G. Daunt and K. Mendelssohn,Propc. Roy. Soc. London A 170, 423 (1939).

    Google Scholar 

  16. P. C. Hendry and P. V. E. McClintock,Cryogenics 27, 131 (1987).

    Google Scholar 

  17. S. Dushman, “Scientific Foundations of Vacuum Technique,” Chap. 2, Sec. 3, John Wiley & Sons (1949).

  18. M. Knudsen,Ann. Physik 28, 75 (1909).

    Google Scholar 

  19. E. W. Becker, R. Misenta, and F. Schmeissner,Phys. Rev. 93, 244 (1954).

    Google Scholar 

  20. J. De Boer,Prog. Low Temp. Phys. Vol. I, Chap. XVIII, p. 381, C. J. Gorter ed., North Holland Publishing Company (1955).

  21. P. J. Nacher, to be published inJ. Chem. Phys. (1994).

  22. M. Himbert, J. Dupont-Roc, and C. Lhuillier,Phys. Rev. A 39, 6170 (1989).

    Google Scholar 

  23. P. J. Bendt,Phys. Rev. 110, 85 (1958).

    Google Scholar 

  24. M. Himbert, J. Dupont-Roc, M. Leduc, and P. J. Nacher,Jap. Journal App. Phys. 26, supp. 26–3, 211 (1987).

    Google Scholar 

  25. R. L. Rusby and M. Durieux,Cryogenics 24, 363 (1984).

    Google Scholar 

  26. S. G. Sydoriak and T. R. Roberts,Phys. Rev. 118, 901 (1960).

    Google Scholar 

  27. A. K. Sreedhar and J. G. Daunt,Phys. Rev. 117, 891 (1960).

    Google Scholar 

  28. E. M. Lifshitz and L. P. Pitaevskii, “Statistical Physics” (part 1), Sec. 95, Pergamon Press (1980).

  29. R. A. Buckingham and R. A. Scriven,Proc. Phys. Soc. [Lond.]A 65, 376 (1952).

    Google Scholar 

  30. J. J. Hurly, W. L. Taylor, and F. R. Meeks,J. Chem. Phys. 96, 3775 (1992).

    Google Scholar 

  31. E. S. Sabisky and C. H. Anderson,Phys. Rev. Lett. 30, 1122 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Unité de recherche de l'Ecole Normale Supérieure et de l'Université Pierre et Marie Curie, associée au CNRS (URA 18).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nacher, P.J., Cornut, M. & Hayden, M.E. Compression of3He by refluxing4He: A model for computing HEVAC effects in3He-4He mixtures. J Low Temp Phys 97, 417–443 (1994). https://doi.org/10.1007/BF00754302

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754302

Keywords

Navigation