Skip to main content
Log in

Superfluid transition in4He in gravity and heat flow

  • Rapid Communication
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

When4He in a normal fluid state near the superfluid transition is cooled from the bottom below the transition, a superfluid region appears at the bottom and slowly expands in the upward direction. We performed simulations for this case in one dimension fixing the temperature Tb at the bottom and the heat flux at the top Q. We find densely distributed phase slip centers rapidly oscillating in time in the expanding superfluid region. Their role is to produce a temperature gradient compensating the transition temperature gradient (dTλ(p)/dp) pg in gravity and to produce a constant negative reduced temperature T-Tλ(p) with small fluctuations superposed. The superfluid velocity multiplied by the correlation length is found to be violently fluctuating around ħ/√3m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ahlers,Phys. Rev. 171, 275 (1968).

    Google Scholar 

  2. V. L. Ginzburg and A. A. Sobaynin,J. Low Temp. Phys. 49, 507 (1982).

    Google Scholar 

  3. A. Onuki,J. Low Temp. Phys. 50, 433 (1983);55, 309 (1984).

    Google Scholar 

  4. R. Haussmann and V. Dohm,Phys. Rev. B 46, 6361 (1992).

    Google Scholar 

  5. A. Onuki, a paper presented at the Fifth Oregon Conference on Liquid Helium, Feb. 1987;Japanese Journal of Applied Physics 26, 365 (1987) (Proc. 18th Int. Conf. on Low Temperature Physics).

  6. G. Ahlers and F.-C. Liu, a preprint.

  7. W.Y. Tam and G. Ahlers,Phys. Rev. 32 B, 5932 (1982).

    Google Scholar 

  8. M. Dingus, F. Zhong and H. Meyer,J. Low Temp. Phys. 65, 185 (1996).

    Google Scholar 

  9. B.I. Halperin, P.C. Hohenberg and E.D. Siggia,Phys. Rev. 13 B, 1299 (1976).

    Google Scholar 

  10. P.C. Hohenberg,Physica B109 &110, 1436 (1982).

    Google Scholar 

  11. W.J. Skocpol and M. Tinkham,Rep. Prog. Phys. 38, 1049 (1975).

    Google Scholar 

  12. R. Haussmann and V. Dohm,Z. Phys. B 87, 229 (1992).

    Google Scholar 

  13. A. Onuki,J. Low Temp. Phys. 97, 91 (1995);102, 237 (1996).

    Google Scholar 

  14. J.S. Langer and V. Ambegaokar,Phys. Rev. 164, 498 (1967).

    Google Scholar 

  15. H. J. Mikeska,Phys. Rev. 179, 166 (1969).

    Google Scholar 

  16. L. Kramer,Phys. Rev. 179, 149 (1969).

    Google Scholar 

  17. A. Onuki and Y. Yamazaki,J. Low Temp. Phys. 103, 131 (1996).

    Google Scholar 

  18. J.S. Langer and M.E. Fisher,Phys. Rev. Lett. 19, 560 (1967).

    Google Scholar 

  19. J.R. Clow and J.D. Reppy,Phys. Rev. Lett. 19, 291 (1967).

    Google Scholar 

  20. G. Ahlers,Phys. Rev. Lett. 22, 54 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onuki, A. Superfluid transition in4He in gravity and heat flow. J Low Temp Phys 104, 133–142 (1996). https://doi.org/10.1007/BF00754093

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00754093

PACS numbers

Navigation