Skip to main content
Log in

Heat capacity study of4He desorbing from H2-plated graphite

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report measurements of the surface binding energy of4He adsorbed on 1.45, 2.15, or 3.15 layers of hydrogen plating graphite. The heat capacity of partial monolayer coverages of helium was measured using adiabatic heat pulse calorimetry from 0.2 to 9 K. Desorption of low surface density4He films was indicated above ≈2 K by a broad peak in the heat capacity. A model was developed to calculate the specific heat of an ideal gas in two dimensions as it desorbs into an ideal gas in three dimensions. This model was used to obtain the binding energies from our experimental data. The binding energies per atom are −39, −25.8, and −22 ± 0.5 K, respectively, for the three hydrogen platings. The 2-d compressibility of the partial solid second layer of H2 in the 1.45 layer H2 coverage was calculated from an increase in its melting temperature with increase of4He 2-d pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-T. Chen, J. M. Roesler, and J. M. Mochel,J. Low Temp. Phys. 89, 125 (1992).

    Google Scholar 

  2. J. G. Brisson, J. C. Mester, and I. F. Silvera,Phys. Rev. B 44, 12453 (1991).

    Google Scholar 

  3. P. W. Adams and V. Pant,Phys. Rev. Lett. 68, 2350 (1992).

    Google Scholar 

  4. G. Zimmerli, G. Mistura, and M. H. W. Chan,Phys. Rev. Lett. 68, 60 (1992).

    Google Scholar 

  5. H. J. Lauter, H. Godfrin, V. L. P. Frank, and P. Leiderer, inExcitations in Two-Dimensional and Three-Dimensional Quantum Fluids, A. G. F. Wyatt and H. J. Lauter, eds. (Plenum Press, New York, 1991), p. 419.

    Google Scholar 

  6. P. S. Ebey, Y. M. Liu, and O. E. Vilches,Physica B 194–196, 635 (1994).

    Google Scholar 

  7. S.-C. Zhang,Phys. Rev. Lett. 71, 2142 (1993).

    Google Scholar 

  8. K. Mullen, H. T. C. Stoof, M. Wallin, and S. M. Girvin,Phys. Rev. Lett. 72, 4013 (1994).

    Google Scholar 

  9. M. Wagner and D. M. Ceperley,J. Low Temp. Phys. 94, 161 (1994).

    Google Scholar 

  10. M. Wagner and D. M. Ceperley,J. Low Temp. Phys. 94, 185 (1994).

    Google Scholar 

  11. F. Mugele, U. Albrecht, and P. Leiderer,J. Low Temp. Phys. 96, 177 (1994).

    Google Scholar 

  12. E. Cheng, M. W. Cole, J. Dupont-Roc, W. F. Saam, and J. Treiner,Rev. Mod. Phys. 65, 557 (1993).

    Google Scholar 

  13. M. W. Cole, E. Cheng, C. Carraro, W. F. Saam, M. R. Swift, and J. Treiner,Physica B 197, 254 (1994).

    Google Scholar 

  14. E. Cheng, G. Ihm, and M. W. Cole,J. Low Temp. Phys. 74, 519 (1989).

    Google Scholar 

  15. E. Cheng, M. W. Cole, W. F. Saam, and J. Treiner,Phys. Rev. Lett. 67, 1007 (1991).

    Google Scholar 

  16. P. J. Nacher and J. Dupont-Roc,Phys. Rev. Lett. 67, 2966 (1991).

    Google Scholar 

  17. K. Letola, S. Wang, and R. B. Hallock,Phys. Rev. Lett. 68, 201 (1992).

    Google Scholar 

  18. C. G. Paine and G. M. Seidel,Phys. Rev. B 50, 3134 (1994).

    Google Scholar 

  19. L. Pierre, H. Guignes, and C. Lhuillier,J. Chem. Phys. 82, 496 (1985).

    Google Scholar 

  20. J. M. Mochel and M.-T. Chen,Physica B 197, 278 (1994).

    Google Scholar 

  21. H. Wiechert, inExcitations in Two-Dimensional and Three-Dimensional Quantum Fluids, A. G. F. Wyatt and H. J. Lauter, eds. (Plenum Press, New York, 1991), p. 499.

    Google Scholar 

  22. F. C. Liu, Ph.D. Dissertation, University of Washington, 1992.

  23. F. C. Liu, Y. M. Liu, and O. E. Vilches,Phys. Rev. B 51, 2848 (1995).

    Google Scholar 

  24. M. H. W. Chan and A. D. Migone,Phys. Rev. B 30, 2681 (1984).

    Google Scholar 

  25. J. G. Dash,Films on Solid Surfaces (Academic Press, New York, 1975).

    Google Scholar 

  26. A. L. Pereira, F. A. B. Chaves, and E. Lerner,J. Low Temp. Phys. 88, 421 (1992).

    Google Scholar 

  27. G. A. Zimmerli, Ph.D. Thesis, Pennsylvania State University, 1990.

  28. G. Vidali, G. Ihm, H.-Y. Kim, and M. W. Cole,Surf. Sci. Rep. 12, 133 (1991).

    Google Scholar 

  29. E. Cheng, W. F. Saam, M. W. Cole, and J. Treiner,J. Low Temp. Phys. 92, 11 (1993), derived a site-independent potential for4He adsorbed on graphite plated with two layers of H2 by modeling the system as a semi-infinite slab of graphite plated with a thin slab of bulk solid hydrogen. They calculated a potential well depth of 30.8 K.

    Google Scholar 

  30. W. Meyer, P. C. Hariharan, and W. Kutzelnigg,J. Chem. Phys. 73, 1880 (1980).

    Google Scholar 

  31. W. Meyer,Chem. Phys. 17, 27 (1976).

    Google Scholar 

  32. P. C. Souers,Hydrogen Properties for Fusion Energy (University of California Press, Berkeley, 1986).

    Google Scholar 

  33. P. M. Morse,Phys. Rev. 34, 57 (1929).

    Google Scholar 

  34. J. P. Dahl and M. Springborg,J. Chem. Phys. 88, 4535 (1988).

    Google Scholar 

  35. W. E. Carlos and M. W. Cole,Phys. Rev. B 21, 3713 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebey, P.S., Liu, Y.M. & Vilches, O.E. Heat capacity study of4He desorbing from H2-plated graphite. J Low Temp Phys 100, 131–145 (1995). https://doi.org/10.1007/BF00753840

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00753840

Keywords

Navigation