Journal of Low Temperature Physics

, Volume 94, Issue 5–6, pp 637–645 | Cite as

The pre-onset, transitional, and foot regions in resistance vs temperature behavior in high-critical temperature superconducting cuprates: Inferences regarding maximum critical temperature

  • G. C. Vezzoli
  • M. F. Chen
  • T. Burke


We have studied the pre- onset deviation-from-linearity region, the transitional regime, and the foot region in the resistance vs temperature behavior of high- Critical Temperature oxide superconductors, employing time-varying magnetic fields and carefully controlled precise temperatures. We have previously shown that the best value of critical temperature can be extrapolated from the magnetic field induced divergence of the resistance vs inverse absolute temperature data as derived from the transitionaland/or foot regions, and that these data are in accord with results from Hall effect studies. The pre-onset region however, shows a differing non -diverging behavior. However sweep magnetic field studies show that, as a function of field, differential resistance data points corresponding to temperature values in the normal state, pre-onset state,and transitional state all lie on a straight line, whereas data points corresponding to the foot region and zero resistance region deviate from this line. We interpret these data to indicate that the phenomena that govern the pre- onset state constitute a different stage of processes that arise initially in the normal state at temperature slightly greater than the critical temperature, and continue in the transitional state at temperature slightly less than the critical temperature. We believe that the lifetime of the particle that mediates Cooper-pairing establishes these different stages of the process leading to superconductivity in the cuprates.


Critical Temperature Temperature Behavior Transitional State Differential Resistance Onset State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Bednorz and R. A. Mueller,Z. Phys. B 64, 189 (1986).Google Scholar
  2. 2.
    C. W. Chu, R. H. Hor, R. L. Meng, L. Gao, E. J. Huang, and Y. Q. Wang,Phys. Rev. Lett. 58, 405 (1987). C. W. Chu,Phys. Rev. Lett. 58, 1891 (1987).Google Scholar
  3. 3. a.
    Jones, T. E.,et al., ACS Symposium Series 377, 1988, pp. 155–167.Google Scholar
  4. 3. b.
    B. Brandt, private communication; H. Sample, B. Brandt, and L. Rubin,Rev. Sci. Instrum. 53 (8), 1129 (1982); B. Brandt, L. Rubin, H. Sample,Rev. Sci. Instrum., 59(4),642 (1988).Google Scholar
  5. 3. c.
    L. Goldfarb, and D. K. Chen,J. Appl Phys. 63, 400 (1988); J. Ekin, T. M. Larson, N. F. Bergen, A. J. Nelson, A. B. Blankenship,Appl. Phys. Lett. 52 (21), 1819 (1988); J. Ekin A. J. Panson, and B. A. Blankenship,Appl. Phys. Lett. 52(4), 331 (1988).Google Scholar
  6. 3. d.
    B. M. Moon,J. Appl. Phys. (in press).Google Scholar
  7. 4.
    G. C. Vezzoli, M. F. Chen, F. Craver, A. Safari, B. M. Moon, B. Lalevic, T. Burke, and M. Shoga,J. Magn. Mat. 88, 351 (1990).Google Scholar
  8. 5.
    M. F. Hundley, A. Zettl, A. Stacey, and M. L. Cohen,Phys. Rev. B 35, 8800 (1987). G. C. Vezzoli, T. Burke, B. M. Moon, B. Lalevic, A. Safari, H. G. K. Sundar, R. Bonometti, C. Alexander, C. Rau, and K. Waters.J. Magn. Magn. Mal. 79, 146 (1989), Y. Zhao, J. Xia, Z. He, S. Sun, Q. Zhang, Y. Qian, Z. Chen, and G. Pan,Chin. Phys. Lett. 5, 221 (1988); G. C. Vezzoli, M. F. Chen, F. Craver, and T. Burke, Proc. New York Acad. Sci.,Frontiers in Physics. A. Seshadri,High Temperature Superconductivity, ed. by J. Ashkenazi, S. Barnes, F. Zuo, B. Kline, and G. Vezzoli, Plenum, New York, 1992, p. 225.Google Scholar
  9. 6.
    G. C. Vezzoli,J. Magn. Mat. 82, 335 (1989);Google Scholar
  10. 6.b)
    G. C. Vezzoli, B. M. Moor, M. F. Chen, T. Burke, and F. Craver, In High-Temperature Superconductivity, ed. by J. Ashkenazi, S. E. Barnes, F. Zuo, G. C. Vezzoli and B. M. Klein, Plenum Press, New York, 1991, p. 257–274.Google Scholar
  11. 7. a)
    M. B. Maple, Y. Dalichaouch, J. M. Ferreira, R. R. Kake, B. W. Lee, J. J. Neumeier, M. S. Torikachvili, K. N. Kurvz,Physica B 148, 155 (1987);Google Scholar
  12. 7.b)
    C. Fincher and G. B. Blanchet,Phys. Rev. Lett. 67 (20), 2902 (1991).Google Scholar
  13. 8.
    B. Matthies, H. Suhl, and E. Corenzwit,J. Phys. Chem. Solids 13, 156 (1959) andPhys. Rev. Lett. 1, 92 (1958).Google Scholar
  14. 9.
    J. M. Tarason, L. H. Greene, W. R., McKinnon, G. W. Hull,Solid State Commun. 63, 499 (1987); M. B. Maple, Y. Dalichaousch, J. M. Ferreira, R. R. Hake, B. W. Lew, J. J. Neumeier, M. S. Torikachoili, K. N. Yang, H. Zhou, R. P. Guertin, and M. V. Kuric,Physica B 148, 155 (1987).Google Scholar
  15. 10.
    B. Lalevic,J. Appl. Phys. 31, 234 (1960) andPhys. Rev. 128, 1070 (1964); R. Weber,Phys. Rev. 72, 1241 (1947); B. Kaplan and J. G. Daunt,Phys. Rev. 89, 907 (1953); D. Baird,Can. J. Phys. 37, 120 (1959), D. H. Andrews, R. M. Mitton, and W. DeSorbo,J. Opt. Soc. Am. 36, 520 (1946) andProc. Roy. Soc. (London)A-82, 194 (1948).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • G. C. Vezzoli
    • 1
  • M. F. Chen
    • 1
  • T. Burke
    • 2
  1. 1.Ceramics Research BranchUS Army Research LaboratoryWatertown
  2. 2.Pulsed Power BranchUS Army Research LaboratoryFort Monmouth

Personalised recommendations