Journal of Low Temperature Physics

, Volume 98, Issue 3–4, pp 251–268 | Cite as

Nucleation of superconductivity in a thin film with a lattice of circular holes

  • A. Bezryadin
  • B. Pannetier


We investigate experimentally the nucleation of superconductivity in a thin Aluminium film with a square lattice of microholes in a uniform perpendicular magnetic field H. It is shown that in a non-zero magnetic field, this system has an elevated critical temperature T c * (H) in comparison to the reference film without holes. This effect can be considered as a generalisation of the well known surface superconductivity effect for the case of a finite radius of the surface and a multiply connected geometry of the sample. Quantization of the fluxoid around each hole leads to oscillations in the T c * (H) dependence with a period approximately corresponding to one flux quantum through a hole. Also another type of oscillation with a smaller period which is equal to one flux quantum per unit cell was observed. We discuss the second type of oscillation in terms of an interaction between the holes. We believe that our results can be useful in the analysis of high-Tc superconductors with columnar defects because, as it is shown here, a comparison of the Tc(H) dependence before and after irradiation can give some special information on the properties of the amorphous tracks produced by highenergy ions. While many experimental parameters are different in our system and in HTSC we present arguments why this analogy should be correct.


Magnetic Field Critical Temperature Circular Hole Aluminium Film Flux Quantum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Buzdin,Phys. Rev. B 47, 11416 (1993).Google Scholar
  2. 2.
    G. S. Mkrtchyan and V. V. Shmidt,Soviet Phys. JETP 44, 195 (1972).Google Scholar
  3. 3.
    A. T. Fiory, A. F. Hebard, and S. Somekh,Appl. Phys. Lett. 32, 73 (1978).Google Scholar
  4. 4.
    D. Saint-James and P. G. de Gennes,Phys. Lett. 7, 306 (1963).Google Scholar
  5. 5.
    W. A. Little and R. Parks,Phys. Rev. A 133, 97 (1964).Google Scholar
  6. 6.
    B. Pannetier, J. Chaussy, R. Rammal, J. C. Villegier,Phys. Rev. Lett. 53, 1845 (1984).Google Scholar
  7. 7.
    O. Buisson, P. Gandit, R. Rammal, Y. Y. Wang, and B. Pannetier,Physics Letters A 150, 36 (1990); R. Rammal (1989), unpublished.Google Scholar
  8. 8.
    B. Pannetier, J. Chaussy and R. Rammal,J. Physique-LETTERS 44, L-853 (1983).Google Scholar
  9. 9.
    M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975).Google Scholar
  10. 10.
    P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966).Google Scholar
  11. 11.
    Handbook of Mathematical Functions, Edited by M. Abramowitz and I. A. Stegun (Dover Publications, Inc., New York, 1970), p. 504.Google Scholar
  12. 13.
    G. Deutscher and P. G. de Gennes, inSuperconductivity, Vol. 2, ed. Parks (Dekker, New York, 1969), p. 1005.Google Scholar
  13. 14.
    Y. K. Kwong, K. Lin, M. S. Isaacson, and J. M. Parpia,Phys. Rev. Lett. 65, 2905 (1990).Google Scholar
  14. 15.
    A. Bezryadin, A. Buzdin, and B. Pannetier,Phys. Rev. B 51 (1995), to be published.Google Scholar
  15. 16.
    Yu. N. Ovchinnikov,Sov. Phys. JETP 52, 755 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. Bezryadin
    • 1
    • 2
  • B. Pannetier
    • 1
  1. 1.Centre de Recherches sur les Très Basses Températures CNRSGrenobleFrance
  2. 2.Institute of Solid State Physics, ChernogolovkaMoscow distr.Russia

Personalised recommendations