Advertisement

Journal of Low Temperature Physics

, Volume 98, Issue 3–4, pp 159–166 | Cite as

On the deficiency of the fluxon mass derived from the lattice elastic energy

  • Mark W. Coffey
Articles

Abstract

Inadequacies of a result for the fluxon mass per unit length m derived from the nonlocal elasticity of the flux line lattice are discussed. Unusual properties of m are pointed out, including a divergent temperature dependence, showing the need to replace this quantity and the associated viscosity in dynamical expressions. An Appendix illustrates one of many alternative fluxon masses and viscosities, the electromagnetic contribution of AJ fluxons.

Keywords

Viscosity Magnetic Material Unit Length Elastic Energy Line Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Przelozny,Physica B 133, 71 (1985).Google Scholar
  2. 2.
    Z. Przelozny,J. Low Temp. Phys. 64, 105 (1986).Google Scholar
  3. 3.
    A. V. Mitin,Sov. Phys. JETP 66, 335 (1987); A. C. Mota, P. Visani, and A. Pollini,Phys. Rev. B 37, 9830 (1988); N. Giordano,Phys. Rev. Lett. 61, 2137 (1988); A. C. Motaet al., Phisica C 185–189, 343 (1991); Y. Liu. D. B. Haviland, L. Glazman, and A. M. Goldman,Phys. Rev. Lett. 68, 2224 (1992).Google Scholar
  4. 4.
    P. Ao and D. J. Thouless,Phys. Rev. Lett. 72, 132 (1994).Google Scholar
  5. 5.
    P. Ao,Phys. Rev. Lett. 69, 2997 (1992).Google Scholar
  6. 6.
    J. I. Gittleman and B. Rosenblum,Proc. IEEE 52, 1138 (1964);Phys. Rev. Lett. 16, 734 (1966);J. Appl. Phys. 39, 2617 (1968).Google Scholar
  7. 7.
    N.-C. Yeh,Phys. Rev. B 43, 523 (1991).Google Scholar
  8. 8.
    M. W. Coffey and J. R. Clem,Phys. Rev. B 44, 6903 (1991).Google Scholar
  9. 9.
    M. W. Coffey and J. R. Clem,Phys. Rev. B 48, 342 (1993).Google Scholar
  10. 10.
    W. Jones and N. H. March, Theoretical Solid State Physics, Dover, Inc., Vol. 1, New York, 1985.Google Scholar
  11. 12.
    E. H. Brandt,J. Low Temp. Phys. 44, 33, 59 (1981); E. H. Brandt and A. Sudbo,Phys. Rev. Lett. 66, 2278 (1991).Google Scholar
  12. 13.
    J. R. Clem, in Low Temperature Physics-LT 14, eds. M. Krusius and M. Vuorio, North Holland, Amsterdam, 1975, Vol. 2, p. 285; V. G. Kogan,Phys. Rev. B 21, 2799 (1980); V. G. Kogan,J. Low Temp. Phys. 32, 419 (1978).Google Scholar
  13. 14.
    H. Suhl,Phys. Rev. Lett. 14, 226 (1965).Google Scholar
  14. 15.
    M. W. Coffey and Z. Hao,Phys. Rev. B 42, 5230 (1991).Google Scholar
  15. 16.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics, W. B. Saunders Company, Philadelphia, 1976.Google Scholar
  16. 17.
    Equation (7) of Ref. [1] and Eq. (10) of Ref. [2] should have Planck's constanth replaced by η.Google Scholar
  17. 18.
    M. W. Coffey,Phys. Rev. B 49, 9774 (1994); J. Low Temp. Phys.96, 81 (1994).Google Scholar
  18. 19.
    V. N. Popov,Sov. Phys. JETP 37, 341 (1974).Google Scholar
  19. 20.
    A. Gurevich,Phys. Rev. B 46, 3187 (1992);48, 12857 (1993).Google Scholar
  20. 21.
    A. Gurevich and L. D. Cooley,Phys. Rev. B 50 (1994).Google Scholar
  21. 22.
    P. Lebwohl and M. J. Stephen,Phys. Rev. B 163, 376 (1967).Google Scholar
  22. 23.
    J. R. Clem and M. W. Coffey,Phys. Rev. B 42, 6209 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Mark W. Coffey
    • 1
    • 2
  1. 1.Electromagnetic Technology DivisionNational Institute of Standards and TechnologyUSA
  2. 2.Department of PhysicsThe University of ColoradoBoulder

Personalised recommendations