Advertisement

Journal of Structural Chemistry

, Volume 34, Issue 5, pp 659–665 | Cite as

New form of effective potential to calculate polarization effects of theπ-electronic states of organic molecules

  • A. V. Glushkov
Article

Abstract

A new relation for the contribution of the most important polarization effects in the energy of the π-electronic states of organic molecules is derived. For π-electronic systems we suggest a correct form of the ejfective potential of the two-panicle polarization interaction of π-electrons via the polarizable Σ-core. This form approximates (by the Thomas-Fernti method) the exact contribution of the corresponding exchange polarization diagrams of the Rayleigh-Schrödinger perturbation theory. The potential may be flectively used in ab initio calculations of π-electronic systems typically done in the frozen core approximation.

Keywords

Physical Chemistry Inorganic Chemistry Perturbation Theory Organic Molecule Effective Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Wilson,Electronic Correlation in Molecules, Oxford University Press, New York (1984).Google Scholar
  2. 2.
    G. A. Segal (ed.),Semiempirical Methods in Electronic Structure Calculations, Vol. 1, 2 Plenum, New York (1977).Google Scholar
  3. 3.
    L. R. Kaln, and W. A. Goddard III,J. Chem. Phys.,56, No. 7, 2685–2701 (1972).Google Scholar
  4. 4.
    C. F. Bender, T. H. Dunning, Jr., H. F. Schaefer, W. A. Goddard, et al.,Chem. Phys. Lett.,15, No. 1, 171–174 (1972).Google Scholar
  5. 5.
    P. J. Hay and I. Shavitt,J. Chem. Phys.,60, No. 7, 2865–2876 (1974).Google Scholar
  6. 6.
    S. Wilson,Mol. Phys.,35, No. 1, 1–17 (1978).Google Scholar
  7. 7.
    A. V. Glushkov, N. N. Dudnik, and S. V. Malinovskaya,Zh. Struk. Khim.,29, No. 1, 163–165 (1988).Google Scholar
  8. 8.
    E. P. Ivanova, L. N. Ivanov, A. E. Kramida, and A. V. Glushkov,Phys. Scripta,32, No. 4, 513–524 (1985).Google Scholar
  9. 9.
    L. N. Ivanov and V. S. Letockov,Commun. Mod. Phys.,12, No. 4, 169–204 (1985).Google Scholar
  10. 10.
    L. N. Ivanov, Abstract of Doctoral Dissertation, Moscow (1985).Google Scholar
  11. 11.
    A. V. Glushkov, L. N. Ivanov, and E. P. Ivanova,Autoionization Phenomena in Atoms [in Russian], MGU, Moscow (1986).Google Scholar
  12. 12.
    C. Bottcher and A. Dalgarno,Proc. R. Soc. Lond. A, 340, No. 2, 187–198 (1974).Google Scholar
  13. 13.
    C. Green,Phys. Rev. A,22, No. 2, 149–157 (1980).Google Scholar
  14. 14.
    A. Hibbert,Adv. At. Mol. Phys.,18, No. 2, 209–240 (1982).Google Scholar
  15. 15.
    V. V. Tolmachev,Adv. Chem. Phys. 14, No. 2, 421–470 (1969).Google Scholar
  16. 16.
    V. V. Tolmachev,Fermi Gas Theory [in Russian], MGU, Moscow (1975).Google Scholar
  17. 17.
    L. N. Ivanov and V. V. Tolmachev,Izv. Vyssh. Uchebn. Zaved., Fiz.,2, 83–88 (1969).Google Scholar
  18. 18.
    N. H. March and S. Ludqvist,Theory of the Inhomogeneous Electron Gas, Plenum, New York (1983).Google Scholar
  19. 19.
    E. P. Ivanova and A. V. Glushkov,J. Quant. Spectrosc. Radiat. Transf.,36, No. 2, 127–145 (1986).Google Scholar
  20. 20.
    M. Ya. Amusiya,Atomic Photoeffect [in Russian], Nauka Moscow (1987).Google Scholar
  21. 21.
    A. V. Glushkov,Zh. Fiz. Khim.,65, No. 11, 2970–2976 (1991).Google Scholar
  22. 22.
    J. B. Rose, T. Shibuya, and V. McKoy,J. Chem. Phys.,60, No. 7, 2700–2704 (1974).Google Scholar
  23. 23.
    D. L. Yeager and V. McKoy, ibid., 2714–2716 (.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. V. Glushkov

There are no affiliations available

Personalised recommendations