Advertisement

Journal of Low Temperature Physics

, Volume 101, Issue 3–4, pp 325–330 | Cite as

Structure of alkali dimers at the surface of liquid helium

  • F. Ancilotto
  • M. W. Cole
  • G. DeToffol
  • P. B. Lerner
  • F. Toigo
Countributed Posters Wetting

Abstract

Calculations are presented of the equilibrium configuration (“dimple”) of a Na2 or Li2 molecule absorbed on the surface of liquid3H e or liquid4He. The computed aimer binding energies are somewhat greater than those of the monomers. The lowest energy occurs when the molecule lies flat, but the energy in the erect orientation is only ∼ 1K higher (implying relatively free rotation). The center of mass lies ∼ 4Åabove the liquid surface and the dimple has a depth ∼ 3Å. An exceptional case is Li2 on liquid3H e, for which the surface state is unstable relative to solvation in the bulk.

Keywords

Diffuse Interface Alkali Atom Model Yield Result Alkali Dimer Density Functional Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    F. Dalfovo,Z. Phys. D 29, 61 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    F. Ancilotto, E. Cheng, M. W. Cole and F. Toigo,Z. Phys. B, in press.Google Scholar
  3. 3.
    I. B. Mantz and D. O. Edwards,Phys. Rev. B 20, 4518 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    A. P. M. Matthey, J. T. M. Walraven and I. F. Silvera,Physica B/C 108, 1499 (1981); R. W. Cline, T. J. Greytak and D. Kleppner,Phys. Rev. Lett. 47, 1195 (1981).Google Scholar
  5. 5.
    F. Stienkemeier, W. E. Ernst, J. Higgins and G. Scoles,J. Chem. Phys. 102, 615 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    F. Stienkemeier, J. Higgins, W. E. Ernst and G. Scoles,Phys. Rev. Lett, to be published; S. I. Kanorsky, W. Arndt, R. Dziewior, A. Weis and T. W. Hänsch,Phys. Rev. B 50, 6292 (1994).Google Scholar
  7. 7.
    U. Rothlisberger and W. Andreoni,J. Chem. Phys. 94, 8129 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    J. Dupont-Roc, M. Himbert, N. Pavloff and J. Treiner,J. Low Temp. Phys. 81, 31 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    R. Schinke, W. Muller, W. Meyer and P. McGuire,J. Chem. Phys. 74, 3916 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    K. S. Liu, M. H. Kalos and G. V. Chester,J. Low Temp. Phys. 13, 227 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    The unconstrained (free) interface is much more diffuse, as seen in Fig. 2 and measured by L. B. Lurio, T. A. Rabedeau, P. S. Pershan, I. F. Silvera, M. Deutsch, S. D. Kosowsky and B. M. Ocko,Phys. Rev. B 48, 9644 (1993).ADSCrossRefGoogle Scholar
  12. 13.
    H. -G. Rubahn and J. P. Toennies,Chem. Phys. 126, 7 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • F. Ancilotto
    • 1
  • M. W. Cole
    • 1
    • 2
  • G. DeToffol
    • 1
  • P. B. Lerner
    • 1
    • 2
  • F. Toigo
    • 1
  1. 1.INFM-Dipartimento di Fisica “Galileo Galilei”Universitá di PadovaItaly
  2. 2.Department of Physics, 104 Davey LaboratoryThe Pennsylvania State UniversityUniversity Park

Personalised recommendations