Skip to main content
Log in

Refrigeration and thermometry of liquid3He-4He mixtures in the ballistic regime

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The ballistic regime of liquid3He-4He mixtures is characterized by a large mean free path λ of the thermal excitations compared to the characteristic dimension of the experiment. We report on investigations of the transport properties of mixtures as well as superfluid3He in the ballistic regime by means of the vibrating wire technique. In order to avoid possible sources of heat leaks into the liquid, the experimental setup was built as far as possible of pure materials only. The contribution of a Ag sinter to the heat leak as well as its influence on the attainable minimum temperature of the mixtures were investigated by performing measurements in two similar setups which differed in the size of the heat exchanger by about one order of magnitude. Moreover, we have used the vibrating wire partly immersed in the superfluid3He-B phase of a phase-separated mixture as a very sensitive, continuously monitoring thermometer for liquid mixtures in their ballistic regime. The achieved minimum temperature of a 6.8%-mixture atp = 0.35 bar and of a 9.5%-mixture atp = 9.8 bar was 130 μK. This value can be considered as an upper limit for the temperature of the mixtures as the damping of the vibrating wire thermometer saturates at this temperature due to its intrinsic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. König and F. Pobell, see preceeding paper in this issue, andPhys. Rev. Lett. 71, 2761 (1993).

    Google Scholar 

  2. A review of the results of the Lancaster group is: A. M. Guénault and G. R. Pickett, inHelium Three, W. P. Halperin, L. P. Pitaevskii (eds.), (Elsevier Science Publishers, 1990).

  3. R. M. Mueller, H. Chocholacs, C. Buchal, M. Kubota, J. R. Owers-Bradley, and F. Pobell,Proc. Symp. on Quantum Fluids and Solids, E. D. Adams, G. G. Ihas (eds.); Sanibel Island, USA (1983); H. Ishimoto, H. Fukuyama, N. Nishida, Y. Miura, Y. Takano, T. Fukuda, T. Tazaki, and S. Ogawa,J. Low. Temp. Phys. 77, 133 (1989); G. Oh, M. Nakagawa, H. Akimoto, O. Ishikawa, T. Hata, and T. Kodama,Physica B 165 & 166, 527 (1990).

  4. G.-H. Oh, Y. Ishimoto, T. Kawae, M. Nakagawa, O. Ishikawa, T. Hata, and T. Kodama,Physica B 194–196, 855 (1994),J. Low Temp. Phys. 95, 525 (1994).

    Google Scholar 

  5. R. König, P. Esquinazi, and F. Pobell,J. Low Temp. Phys. 89, 465 (1992).

    Google Scholar 

  6. A. M. Guénault, V. Keith, C. J. Kennedy, and G. R. Pickett,Phys. Lett. 90A, 432 (1982).

    Google Scholar 

  7. see for example: Ref. 3, and D. J. Bradley, A. M. Guénault, V. Keith, C. J. Kennedy, J. E. Miller, S. G. Mussett, G. R. Pickett, and W. P. Pratt Jr.,J. Low Temp. Phys. 57, 359 (1984).

    Google Scholar 

  8. see for example: T. Nakayama inProg. in Low Temp. Phys., D. F. Brewer (ed.), Vol. XII, p. 115 (Elsevier Science Publishers B. V., 1989).

  9. see for example: F. Pobell,Matter and Methods at Low Temperatures, (Springer Verlag Berlin, Heidelberg 1992).

    Google Scholar 

  10. Ag, purity 5N, Goodfellow Metals, Cambridge, UK.

  11. Ag sinter, nominal grain size 700 Å, Ulvac, Inabata Corp., Japan.

  12. S. Brunauer, P. H. Emmett, and E. Teller,J. Am. Chem. Soc. 60, 309 (1938).

    Google Scholar 

  13. K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R. M. Mueller, and F. Pobell,J. Low Temp. Phys. 73, 101 (1988).

    Google Scholar 

  14. R. J. Soulen and R. B. Dove,SRM 768: Temperature Reference Standard For Use Below 0.5 K; NBS Special Publication (1979).

  15. M. Schwark, M. Kubota, R. M. Mueller, and F. Pobell,J. Low. Temp. Phys. 58, 171 (1985).

    Google Scholar 

  16. M. Schwark, F. Pobell, W. P. Halperin, Ch. Buchal, J. Hanssen, M. Kubota, and R. M. Mueller,J. Low Temp. Phys. 53, 685 (1983).

    Google Scholar 

  17. P. Esquinazi, R. König, and F. Pobell;Z, Phys. B — Cond. Matt. 87, 305 (1992); R. König, P. Esquinazi, and F. Pobell,J. Low Temp. Phys. 90, 55 (1993).

    Google Scholar 

  18. D. I. Bradley, A. M. Guénault, V. Keith, G. R. Pickett, and W. P. Pratt Jr.,J. Phys. C 30, L501 (1982).

    Google Scholar 

  19. H. Ishimoto, H. Fukuyama, N. Nishida, Y. Miura, Y. Takano, T. Fukuda, T. Tazaki, and S. Ogawa,J. Low Temp. Phys. 77, 133 (1989).

    Google Scholar 

  20. D. S. Greywall,Phys. Rev. B 33, 7520 (1986).

    Google Scholar 

  21. S. N. Fisher, G. R. Pickett, and R. J. Watts-Tobin,J. Low Temp. Phys. 83, 225 (1991).

    Google Scholar 

  22. A. M. Guénault, V. Keith, C. J. Kennedy, and G. R. Pickett,Proc. Symp. on Quantum Fluids and Solids, E. D. Adams, G. G. Ihas (eds.), p. 273, Sanibel Island, USA (1983).

  23. A. M. Guénault, V. Keith, C. J. Kennedy, S. G. Mussett, and G. R. Pickett,J. Low Temp. Phys. 62, 511 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, R., Betat, A. & Pobell, F. Refrigeration and thermometry of liquid3He-4He mixtures in the ballistic regime. J Low Temp Phys 97, 311–333 (1994). https://doi.org/10.1007/BF00752921

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00752921

Keywords

Navigation