Skip to main content
Log in

Sequences of initiator and elongator methionine tRNAs in bean mitochondria

Localization of the corresponding genes on maize and wheat mitochondrial genomes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Summary

Two bean mitochondria methionine transfer RNAs, purified by RPC-5 chromatography and two-dimensional gel electrophoresis, have been sequenced usingin vitro post-labeling techniques.

One of these tRNAsMet has been identified by formylation using anE. coli enzyme as the mitochondrial tRNAF Met. It displays strong structural homologies with prokaryotic and chloroplast tRNAF Met sequences (70.1–83.1%) and with putative initiator tRNAm Met genes described for wheat, maize andOenothera mitochondrial genomes (88.3–89.6%).

The other tRNAMet, which is the mitochondrial elongator tRNAF Met, shows a high degree of sequence homology (93.3–96%& with chloroplast tRNAm Met, but a weak homology (40.7%) with a sequenced maize mitochondrial putative elongator tRNAm Met gene.

Bean mitochondrial tRNAF Met and tRNAm Met were hybridized to Southern blots of the mitochondrial genomes of wheat and maize, whose maps have been recently published (15, 22), in order to locate the position of their genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burkard G, Steinmetz A, Keller M, Mubumbila M, Crouse E, Weil JH: Resolution of chloroplast tRNAs by two-dimensional gel electrophoresis. In: Edelman M, Hallick RB, Chua NH (eds) Methods in Chloroplast Molecular Biology. Elsevier Biomedical Press, Amsterdam, New York, Oxford, 1982, pp 347–357.

    Google Scholar 

  2. Bruce AG, Uhlenbeck OC: Reactions at the termini of tRNA with T4 RNA ligase. Nucl Acids Res 5: 3665–3677, 1978.

    Google Scholar 

  3. Cedergren RJ, Larue B, Sankoff D, LaPalme G, Grosjean H: Convergence and minimal mutation criteria for evaluating early events in tRNA evolution. Proc Natl Acad Sci USA, 77: 2791–2796, 1980.

    Google Scholar 

  4. Dron M, Hartmann C, Rode A, Sevignac M: Gene conversion as a mechanism for divergence of a chloroplast tRNA gene inserted in the mitochondrial genome ofBrassica oleracea. Nucl Acids Res 13: 8603–8610, 1985.

    Google Scholar 

  5. Falconet D, Lejeune B, Quetier F, Gray MW: Evidence for homologous recombination between repeated sequences containing 18S and 5S ribosomal RNA genes in wheat mitochondrial DNA. EMBO J 3: 297–302, 1983.

    Google Scholar 

  6. Francis MA, Dudock BS: Nucleotide sequence of a spinach chloroplast isoleucine tRNA. J Biol Chem 19: 11195–11198, 1982.

    Google Scholar 

  7. Gottschalk M, Brennicke A: Initiator methionine tRNA gene inOenothera mitochondria. Curr Genet 9: 165–168, 1985.

    Google Scholar 

  8. Gray MW, Spencer DF: Wheat mitochondrial DNA encodes a eubacteria-like initiator methionine transfer RNA. FEBS Lett 161: 323–327, 1983.

    Google Scholar 

  9. Guillemaut P, Burkard G, Weil JH: Characterization of N-formyl-methionine-tRNA in bean mitochondria and etioplasts. Phytochemistry 11: 2217–2219, 1972.

    Google Scholar 

  10. Guillemaut P, Weil JH: Aminoacylation ofPhaseolus vulgaris cytoplasmic, chloroplastic and mitochondrial tRNAsMet and ofE. coli tRNAsMet by homologous and heterologous enzymes. Biochim Biophys Acta 407: 240–248, 1975.

    Google Scholar 

  11. Iams KP, Heckman JE, Sinclair JH: Sequence of histidyl tRNA, present as a chloroplast insert in mt DNA ofZea mays. Plant Mol Biol 4: 225–233, 1985.

    Google Scholar 

  12. Jeannin G, Burkard G, Weil JH: Characterization ofPhaseolus vulgaris cytoplasmic, chloroplastic and mitochondrial tRNAsPhe; aminoacylation by homologous and heterologous enzymes. Plant Sci Lett 13: 75–81, 1978.

    Google Scholar 

  13. Kashdan MA, Dudock BS: The gene for a spinach chloroplast isoleucine tRNA has a methionine anticodon. J Biol Chem 19: 11191–11194, 1982.

    Google Scholar 

  14. Kelmers AD, Heatherley DE: Columns for rapid chromatographic separation of small amounts of tracer-labelled transfer ribonucleic acids Anal Biochem 44: 486–495, 1971.

    Google Scholar 

  15. Lonsdale DM, Hodge T, Fauron CMR: The physical map and organization of the mitochondrial genome from the fertile cytoplasm of maize. Nucl Acids Res 12: 9249–9261, 1984.

    Google Scholar 

  16. Marechal L, Guillemaut P, Grienenberger JM, Jeannin G, Weil JH: Structure of bean mitochondrial tRNAPhe and localization of the tRNAPhe gene on the mitochondrial genomes of maize and wheat. FEBS Lett 184: 289–293, 1985.

    Google Scholar 

  17. Marechal L, Guillemaut P, Grienenberger JM, Jeannin G, Weil JH: Sequence and codon recognition of bean mitochondria and chloroplast tRNAsTrp: evidence for a high degree of homology. Nucl Acids Res 13: 4411–4416, 1985.

    Google Scholar 

  18. Marechal L, Guillemaut P, Weil JH: Sequences of two bean mitochondria tRNAsTyp which differ in the level of post-transcriptional modification and have a prokaryotic-like large extra-loop. Plant Mol Biol 5: 347–351, 1985.

    Google Scholar 

  19. Parks TD, Dougherty G, LevingsIII CS, Timothy DH: Identification of two methionine transfer RNA genes in the maize mitochondrial genome. Plant Physiol 76: 1079–1082, 1984.

    Google Scholar 

  20. Parks TD, Dougherty G, LevingsIII CS, Timothy DH: Identification of an aspartate transfer RNA gene in maize mitochondrial DNA. Curr Genet 9: 517–519, 1985.

    Google Scholar 

  21. Pillay DTN, Guillemaut P, Weil JH: Nucleotide sequences of three soybean chloroplast tRNAsLeu and re-examination of bean chloroplast tRNA2 Leu sequence. Nucl Acids Res 12: 2997–3001, 1984.

    Google Scholar 

  22. Quetier F, Lejeune B, Delorme S, Falconet D, Jubier MF: Molecular form and function of the wheat mitochondrial genome. In: Van Vloten-Doting, Groot GSP, Hall TC (eds) Molecular Form and Function of the Plant Genome. NATO ASI series A: Life Sciences 83, 1985, pp 413–420.

  23. Sanger F, Coulson AR: The use of thin acrylamide gels for DNA sequencing. FEBS Lett 87: 107–110, 1978.

    Google Scholar 

  24. Schulman LH, Pelka H: Structural requirements for aminoacylation ofE. coli formylmethionine transfer RNA. Biochemistry 16: 4256–4265, 1977.

    Google Scholar 

  25. Silberklang M, Gillum AM, Rajbhandary UL: The use of nuclease P1 in sequence analysis of end group labeled RNA. Nucl Acids Res 4: 4091–4108, 1977.

    Google Scholar 

  26. Sprinzl M, Vorderwulbecke T, Hartmann T: Compilation of tRNA sequences. Nucl Acids Res 13: r1-r49, 1985.

    Google Scholar 

  27. Sprinzl M, Moll J, Meissner F, Hartmann T: Compilation of sequences of tRNA genes. Nucl Acids Res 13: r51-r104, 1985.

    Google Scholar 

  28. Stanley J, Vassilenko S: A different approach to RNA sequencing. Nature 274: 87–89, 1978.

    Google Scholar 

  29. Swamy GS, Pillay DTN: Characterization ofGlycine Max cytoplasmic, chloroplastic and mitochondrial tRNAs and synthetases for phenylalanine, tryptophan and tyrosine. Plant Sci Lett 25: 73–84, 1982.

    Google Scholar 

  30. Timmis JN, Scott NS, Promiscuous DNA: sequence homologies between DNA of separate organelles. Trends in Biochem Sci pp271–273, 1984.

  31. Uemura H, Imai M, Ohtsuka E, Ikehara M, Soll D:E. Coli initiator tRNA analogs with different nucleotides in the discriminator base position. Nucl Acids Res 10: 6531–6539, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marechal, L., Guillemaut, P., Grienenberger, JM. et al. Sequences of initiator and elongator methionine tRNAs in bean mitochondria. Plant Mol Biol 7, 245–253 (1986). https://doi.org/10.1007/BF00752898

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00752898

Keywords

Navigation