Advertisement

Journal of Structural Chemistry

, Volume 34, Issue 6, pp 909–922 | Cite as

Nonlinear optical properties of organic molecular assemblies and fractal metallic clusters

  • V. V. Shelkovnikov
  • V. P. Safonov
  • A. I. Plekhanov
  • F. A. Zhuravlev
Article

Abstract

The paper overviews progress in the development of molecular media based on organic compounds possessing a high third-order nonlinear optical susceptibility. Such media are useful in the design of elements for optical data processing devices. TheX(3) values of polyconjugated polymers and organic dyes are presented; these depend on the film production method and molecular assembly organization. The review discusses nonlinear optical properties of metallic fractal clusters. The nonlinear response of a molecular medium is shown to be greatly enhanced by aggregation of molecules and by their location in a local field of a metallic cluster.

Keywords

Local Field Nonlinear Response Optical Data Nonlinear Optical Property Molecular Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Gibbs,Optical Bistability: Controlling Light with Light, Academic Press (1985).Google Scholar
  2. 2.
    S. A. Akhmanov,New Physical Principles of Optical Data Processing [in Russian], Nauka, Moscow (1990).Google Scholar
  3. 3.
    A. S. Walker,Optical Computing and Processing,1, 91–106 (1991).Google Scholar
  4. 4.
    A. G. Astill,Thin Solid Films,204, 1–17 (1991).Google Scholar
  5. 5.
    G. I. Stelman, E. M. Wright, N. Finlaysen, et al.,J. Lightwave Techn.,6, No. 6, 953–970 (1988).Google Scholar
  6. 6.
    K. Flitzanis,Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press (1987).Google Scholar
  7. 7.
    Yu. F. Pedash, V. V. Ivanov, and A. V. Luzanov,Teor. Éksp. Khim.,28, No. 1, 21–28 (1992).Google Scholar
  8. 8.
    F. Kaizar and J. Messier,Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press (1989).Google Scholar
  9. 9.
    J.-M. Andre and J. Del Halle,Chem. Rev.,91, 843–865 (1991).Google Scholar
  10. 10.
    T. Saka, H. Ikeda, and H. Kawasaki (forthcoming).Google Scholar
  11. 11.
    M. Shott and G. Wegner,Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press (1987).Google Scholar
  12. 12.
    G. J. Exarhos, W. M. I. Risen, and R. U. Baughman,J. Am. Chem. Soc.,98, 481–487 (1978).Google Scholar
  13. 13.
    L. Sebastian and G. Weiser,Chem. Phys. Lett.,64, 369–400 (1979).Google Scholar
  14. 14.
    L. Sebastian and G. Weiser,Phys. Rev. Lett.,46, 1156–1159 (1981).Google Scholar
  15. 15.
    L. Sebastian and G. Weiser,Chem. Phys.,62, 447–457 (1981).Google Scholar
  16. 16.
    K. Kubodera, T. Kirihara, S. Tomaru, and T. Kaino,Measurement of Third-Order Optical Nonlinearities of Organic Thin Films [in Japanese], The Japanese Society of Applied Physics, p. 658.Google Scholar
  17. 17.
    S. Tomaru, K. Kubodera, S. Zembutsu, et al.,Electron Lett.,23, No. 11, 595–596 (1987).Google Scholar
  18. 18.
    T. Katetake, K. Ishikawa, T. Kada, et al.,Extended Abstracts, The 3rd Spring Meeting (1988), The Japanese Society of Applied Physics, p. 809.Google Scholar
  19. 19.
    S. Tomaru, K. Kubodera, and S. Zembutsu,Extended Abstracts, The 48th Autumn Meeting (1987), The Japanese Society of Applied Physics, p. 658.Google Scholar
  20. 20.
    F. Kajzar and J. Messier,Thin Solid Films,132, 11–19 (1985).Google Scholar
  21. 21.
    C. Santeret, J. P. Herman, R. Frey, et al.,Phys. Rev. Lett. 36, No. 16, 956–959 (1976).Google Scholar
  22. 22.
    T. Hasegawa, K. Ishikawa, T. Kanetake, et al.,Chem. Phys. Lett.,171, No. 3, 239–241 (1990).Google Scholar
  23. 23.
    G. Lieser, B. Tieke, and G. Wegner,Thin Solid Films,68, 77–90 (1980).Google Scholar
  24. 24.
    G. I. Stegeman, S. T. Seaton, and R. Zanoni, ibid.,152, 231–263 (1987).Google Scholar
  25. 25.
    F. Kaisar, L. Rothberg, S. Etemad, et al., ibid.,160, 373–377 (1988).Google Scholar
  26. 26.
    N. V. Agrinskaya, L. A. Remizova, and A. Yu. Tkachenko,Pisma Zh. Teor. Fiz.,18, No. 13, 51–56 (1992).Google Scholar
  27. 27.
    N. V. Agrinskaya, E. G. Guk, and L. A. Remizova, to appear in:Fiz. Tverd. Tela.Google Scholar
  28. 28.
    P. N. Prasad,Thin Solid Films,152, 275–294 (1987).Google Scholar
  29. 29.
    T. Kaino, K. Kubodera, S. Tomaru, et al.,Electron Lett.,23, 1095–1097 (1987).Google Scholar
  30. 30.
    M. F. Roberts and S. A. Jenekhe,Chem. Mater. 2, 629–631 (1990).Google Scholar
  31. 31.
    L. Yu, M. Chen, and L. R. Dalton, ibid.Chem. Mater., 649–659.Google Scholar
  32. 32.
    C. P. de Melo and R. Silby,Chem. Phys. lett.,140 537–541 (1988).Google Scholar
  33. 33.
    D. N. Beratan, J. N. Onuchic, and J. W. Perry,J. Phys. Chem.,91, 2696–2698 (1987).Google Scholar
  34. 34.
    K. Kubodera, S. Matsumoto, T. Kaino, and T. Gotoh,Extended Abstracts, The 34th Spring Meeting (1987), The Japanese Society of Applied Physics, p. 681.Google Scholar
  35. 35.
    H. Mataki, T. Gotoh, and J. Kumaki, ibid.Extended Abstracts, The 34th Spring Meeting (1987), The Japanese Society of Applied Physics, p. 682.Google Scholar
  36. 36.
    S. Matsumoto, K. Kubodera, T. Kurihara, and T. Kaino,Appl. Phys. Lett.,51, No. 1, 1–2 (1987).Google Scholar
  37. 37.
    F. Kajzar, I. R. Girling, and I. R. Peterson,Thin Solid Films,160, 209–215 (1988).Google Scholar
  38. 38.
    G. Marowsky, L. F. Chi, D. Mobius, et al.,Chem. Phys. Lett.,147, No. 5, 420–424 (1988).Google Scholar
  39. 39.
    W. E. Toruellas, R. Zanoni, M. B. Margues, et al.,Chem. Phys. Lett.,175, No. 3, 267–272 (1990).Google Scholar
  40. 40.
    S. Nomura, T. Kobayashi, H. Matsuda, et al., ibid.,175, No. 4, 389–393 (1990).Google Scholar
  41. 41.
    H. Ikeda, T. Sakai, and K. Kawasaki,Chem. Lett., 1075–1078 (1991).Google Scholar
  42. 42.
    C. Maloney, H. Byrne, W. M. Dennis, et al.,Chem. Phys.,121, 21–39 (1988).Google Scholar
  43. 43.
    S. Chosal, M. Samoc, P. N. Prasad, and J. J. Tufariello,J. Phys. Chem.,94, 2847–2851 (1990).Google Scholar
  44. 44.
    C. S. Winter, C. A. S. Hill, and A. E. Underhill,Appl. Phys. Lett.,58, No. 2, 107–109 (1991).Google Scholar
  45. 45.
    P. G. Huggard, W. Blau, and D. Schweitzer, ibid.,51, 2183–2192 (1987).Google Scholar
  46. 46.
    Y. Wang,Chem. Phys. Lett.,126, No. 2, 209–214 (1986).Google Scholar
  47. 47.
    T. H. James,The Theory of the Photographic Process, McMillan, New York (1977).Google Scholar
  48. 48.
    Y. Yonezawa, D. Mobius, and H. Kuhn,J. Appl. Phys.,62, No. 5, 2022–2027 (1987).Google Scholar
  49. 49.
    V. L. Bogdanov, E. I. Viktorova, S. V. Kulya, and A. S. Spiro,Pisma Zh. Éksp. Teor. Phys.,53, No. 2, 100–103 (1991).Google Scholar
  50. 50.
    L. Pietronero and E. Tosatti,Fractals in Physics, Amsterdam (1986).Google Scholar
  51. 51.
    B. M. Smirnov,Usp. Fiz. Nauk,149, 177–219 (1986).Google Scholar
  52. 52.
    V. M. Shalayev and M. I. Shtockman,Zh. Éksp. Teor. Fiz.,92, 609–621 (1987).Google Scholar
  53. 53.
    A. V. Butenko, V. M. Shalayev, and M. I. Shtockman, ibid.,94, 107–124 (1988).Google Scholar
  54. 54.
    V. A. Markel, L. S. Muratov, and M. I. Shtockman,Zh. Éksp. Teor. Fiz.,93, 819–837 (1990).Google Scholar
  55. 55.
    S. G. Rautian, V. P. Safonov, P. A. Chubakov, et al.,Pisma Zh. Éksp. Teor. Fiz.,47, 200–203 (1988).Google Scholar
  56. 56.
    A. V. Butenko, Yu. E. Danilova, S. V. Karpov, et al.,Z. Phys.,D17, 283–289 (1990).Google Scholar
  57. 57.
    A. W. Olsen and Z. H. Kafafi,J. Am. Chem. Soc.,113, 7758–7760 (1991).Google Scholar
  58. 58.
    F. A. Zhuravlev, N. A. Orlova, A. M. Plekhanov, et al.,Pisma Zh. Éksp. Teor. Fiz.,56, 264–267 (1992).Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • V. V. Shelkovnikov
  • V. P. Safonov
  • A. I. Plekhanov
  • F. A. Zhuravlev

There are no affiliations available

Personalised recommendations