Skip to main content
Log in

Molecular electronics: Current state and future trends

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The paper reviews the current state of molecular electronics and considers the most interesting trends in its development. It is noted that microscopic dimensions in quantum processes are not the only advantage of molecular technology. It is also important that chemical synthesis of molecular systems ensures the identity of assembled functional elements, thereby providing reliability and efficiency of quantum processes in molecular electronic devices. We propose using the quantum effect of the Peierls instability, which is readily realized in one-dimensional molecular systems. Advantages of this approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. G. Rambidi and V. M. Zamalin,Molecular Electronics: Background and Hopes [in Russian], Znaniye, Moscow (1985).

    Google Scholar 

  2. L. Carter,J. Vac. Sci. Technol. Bi(4), Oct.–Dec., 959–968 (1983).

  3. A. Aviram and M. A. Rathen,Chem. Phys. Lett.,29, 277–282 (1974);

    Google Scholar 

  4. A. Aviram, P. E. Seiden, and M. A. Rather, in: F. L. Carter (ed.),Molecular Electronic Devices, New York (1982), p. 5.

  5. C. Joachim and J. P. Launay,J. Mol. Electron.,6, 37–50 (1990).

    Google Scholar 

  6. F. L. Carter,Phys. Rev. D., No. 132, 175–182 (1984).

    Google Scholar 

  7. S. Roth, G. Mahlen, Y. Shen, and F. Coter,Synth. Met.,28, 815–822 (1989);

    Google Scholar 

  8. L. Z. Stolarczyk and L. Piela,Chem. Phys.,85, 451 (1984).

    Google Scholar 

  9. Zarubezhnaya Radioélektronika, No. 1, 59–64 (1988).

  10. S. Weber,Electronics,61, 143 (1988).

    Google Scholar 

  11. F. L. Carter, in: F. L. Carter (ed.),Molecular Electronic Devices, New York (1982), p. 51.

  12. Y. Aharonov and D. Bohm,Phys. Rev.,115, 485–491 (1959).

    Google Scholar 

  13. A. Aviram,J. Am. Chem. Soc.,110, 5687–5692 (1988).

    Google Scholar 

  14. J. M. Tour, R. Wu, and J. S. Schumm, ibid.,112, 5662–5663 (1990).

    Google Scholar 

  15. R. E. Peierls,Quantum Theory of Solids, Clarendon Press, Oxford (1955).

    Google Scholar 

  16. V. A. Ginzburg and D. A. Kirzhitz (eds.),Problems of High-Temperature Conductivity [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  17. B. Scroati,Prog. Sol. Chem.,18, 1–77 (1988).

    Google Scholar 

  18. S. Roth, H. Bleier, and W. Pukacki,Faraday Discuss Chem. Soc.,88, 223–233 (1989).

    Google Scholar 

  19. S. Roth,Synth. Met.,34, 617–621 (1989).

    Google Scholar 

  20. C. R. Fincher, C. E. Chen, and A. J. Heeger,Phys. Rev.,48, 100–108 (1982).

    Google Scholar 

  21. J. C. W. Chein, F. E. Karasz, and K. Shimamura,Macromol. Chem., Rapid Commun.,3, 655–661 (1982).

    Google Scholar 

  22. M. J. Duijvestijn, A. Manenshi, Jr., J. Smidt, et al.,J. Magn. Res.,64, 461–470 (1985).

    Google Scholar 

  23. A. G. MacDiarmid, J. M. Warakamski, and F. E. Kavasz,Phys. Rev.,B28, 6937–6944 (1983).

    Google Scholar 

  24. Y. W. Park, A. J. Heeger, M. A. Druj, et al.,J. Chem. Phys.,73, 946–957 (1980).

    Google Scholar 

  25. V. M. Skorobogatov and I. B. Krivoshei,Usp. Khim.,57, 832–850 (1988).

    Google Scholar 

  26. I. O. Kulik,Pisma Zh. Éksp. Teor. Fiz.,22, 73–76 (1975).

    Google Scholar 

  27. A. I. Aleshin, E. G. Guk, V. M. Kobryanskii, et al.,Fiz. Tverd. Tela,32, 3066–3070 (1990).

    Google Scholar 

  28. E. Suito and N. Uyeda,J. Phys. Chem.,84, 3223–3230 (1980).

    Google Scholar 

  29. J. H. Sharp and M. Lardon,J. Phys. Chem.,72, 3230–3235 (1968).

    Google Scholar 

  30. S. Nakamura, H. Amatatsu, T. Ozaki, et al.,J. Appl. Phys.,26, 1878–1883 (1987).

    Google Scholar 

  31. S. J. Schramm, R. P. Scaringe, and D. R. Stajakoie,J. Am. Chem. Soc.,102, 6702 (1980).

    Google Scholar 

  32. V. Enkelmann, B. S. Morra, Ch. Kronke, et al.,Chem. Phys.,66, 303 (1982).

    Google Scholar 

  33. M. Mehring,Low-Dimensional Conductors and Superconductors, NATO,155, 185–194 (1981).

    Google Scholar 

  34. A. J. Heeger, in:Chemistry and Physics of One-Dimensional Metals (1977), p. 87.

  35. J. S. Miller and A. J. Epstein,Prog. Inorg. Chem.,20, 1–151 (1976).

    Google Scholar 

  36. A. Bosch and B. Van Bodegon,Acta Cryst. Sect.,B33, 3013–3021 (1977).

    Google Scholar 

  37. S. van Sinaalen, J. L. de Boer, J. Kammandeur, et al.,Mol. Crystal. Liq. Crystal.,120, 173–180 (1985).

    Google Scholar 

  38. K. J. Donovan and E. Q. Wilson,J. Phys.,12, 48–54 (1979).

    Google Scholar 

  39. W. A. Little,Phys. Rev.,134A, 1416–1424 (1964).

    Google Scholar 

Download references

Authors

Additional information

Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 34, No. 6, pp. 75–85, November–December, 1993.

Translated by O. Kharlamova

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieger, Y.G. Molecular electronics: Current state and future trends. J Struct Chem 34, 896–904 (1993). https://doi.org/10.1007/BF00752864

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00752864

Keywords

Navigation