Advertisement

Journal of Low Temperature Physics

, Volume 99, Issue 3–4, pp 611–613 | Cite as

Correlated lattice models in the local approximation — Aspects of a numerical renormalization group treatment

  • T. Pruschke
  • R. Bulla
Novel Many-body Techniques
  • 24 Downloads

Abstract

The numerical renormalization group method is applied to an Anderson impurity with an energy dependent coupling to the conduction band. We describe how the discrete spectra resulting from the numerical calculation can be reliably smoothed using a continued fraction expansion. The investigations are connected with the study of models in infinite spatial dimensions.

PACS numbers

71.10 75.10 L 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Janiš:Z. Phys. B — Condensed Matter 83, 227 (1991).Google Scholar
  2. 2.
    M. Jarrell:Phys. Rev. Lett. 69, 168 (1992).Google Scholar
  3. 3.
    A. Georges, G. Kotliar:Phys. Rev. B 45, 6479 (1992).Google Scholar
  4. 4.
    M. Jarrell, T. Pruschke:Z. Phys. B — Condensed Matter 90, 187 (1993).Google Scholar
  5. 5.
    M. Jarrell, H. Akhlagpour, T. Pruschke:Phys. Rev. Lett. 70, 1670 (1993).Google Scholar
  6. 6.
    K. G. Wilson:Rev. Mod. Phys. 47, 773 (1975).Google Scholar
  7. 7.
    H. R. Krishna-murthy, J. W. Wilkins, K. G. Wilson:Phys. Rev. B 21, 1003 & 1044 (1980).Google Scholar
  8. 8.
    O. Sakai, Y. Kuramoto:Sol. Stat. Comm. 89, 307 (1994).Google Scholar
  9. 9.
    H. O. Frota, L. N. Oliveira:Phys. Rev. B 33, 7871 (1986).Google Scholar
  10. 10.
    T. A. Costi, A. C. Hewson, V. Zlatic:J. Phys.: Condens. Matter 6, 2519 (1994).Google Scholar
  11. 11.
    O. Sakai, Y. Shimizu, T. Kasuya:J. Phys. Soc. Jpn. 58, 3666 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • T. Pruschke
    • 1
  • R. Bulla
    • 1
  1. 1.Institut für Theoretische Physik der UniversitätRegensburgGermany

Personalised recommendations