Skip to main content
Log in

Intrinsic critical velocities in superfluid4He flow through 12-μm diameter orifices near Tλ: Experiments on the effect of geometry

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report super fluid4He flow measurements at temperatures from 1.2 K up to Tλ — 3 mK in three orifices of different mesoscopic geometry. Under conditions of our experiments, the flow usually reaches a temperature-dependent intrinsic critical velocity, where dissipation is believed to occur by thermal (or quantum) nucleation of individual quantized vortex rings or loops. The nucleation rate should be sensitive to the wall geometry of the flow channel and to any local velocity enhancement at the most favorable nucleation site. According to the Iordanskii-Langer-Fisher (ILF) theory, the radius of the “critical” vortex ring, the threshold size which can grow freely by extracting energy from the flow, increases inversely as the superfluid density on approach to the superfluid onset temperature, Tλ. Thus sufficiently near Tλ the critical ring should be large enough that the geometry relevant to the nucleation process and local velocity enhancement can be studied by scanning electron microscope (SEM). We examined our three orifices by SEM. One, a standard optical pinhole, has a relatively smooth taper on one side and a sharp lip on the other. The second is similar, but contains a 1-μm flake perpendicular to the flow, which should provide additional velocity enhancement at its edge. In the third, the sharp lip is beveled to reduce the velocity enhancement at that site. Contrary to expectation, the intrinsic critical velocities are the same, within a relative calibration error of 10%, in all three cases. Thus, local sites of enhanced velocity do not appear to be active in nucleating vortices. This raises a question whether the classical two-fluid model which underlies the ILF calculation is adequate to describe the superfluid hydro-dynamics near walls, as it affects the vortex nucleation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D. Josephson,Phys. Lett. 21 608 (1966); L. S. Goldner and G. Ahlers,Phys. Rev. B 45, 13129 (1992).

    Google Scholar 

  2. L. Onsager,Nuovo Cimenta Suppl. 6, 249 and 269 (1949).

    Google Scholar 

  3. R. P. Feynman, inProgress in Low Temperature Physics, edited by C. J. Gorter, (North Holland, Amsterdam, 1955), Vol. 1, Chap. 2.

    Google Scholar 

  4. W. I. Glaberson and R. J. Donnelly, inProgress in Low Temperature Physics edited by D. F. Brewer (North-Holland, Amsterdam, 1986), Vol. 9, Chap. 1.

    Google Scholar 

  5. R. J. Donnelly,Quantized Vortices in Helium II (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  6. I. M. Khalatnikov.Introduction to the Theory of Superfluidity (W. A. Benjamin, New York, 1965).

    Google Scholar 

  7. W. E. Keller,Helium-3 and Helium-4 (Plenum, New York, 1968), p. 289.

    Google Scholar 

  8. W. I. Glaberson and R. J. Donnelly,Phys. Rev. 141, 208 (1966).

    Google Scholar 

  9. K. W. Schwarz,Phys. Rev. Lett. 64, 1130 (1990).

    Google Scholar 

  10. J. R. Clow and J. R. Reppy,Phys. Rev. Lett. 19, 291 (1967).

    Google Scholar 

  11. J. S. Langer and J. D. Reppy inProgress in Low Temperature Physics edited by C. J. Gorter, (North-Holland, Amsterdam, 1970) Vol. 6, Chap. 1.

    Google Scholar 

  12. H. A. Notarys,Phys. Rev. Lett. 22, 1240 (1969); see also S. J. Harrison and K. Mendelssohn, inLow Temperature Physics — LT 13, edited by K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel (Plenum Press, New York, NY 1974), Vol. 1, p. 298.

    Google Scholar 

  13. G. B. Hess,Phys. Rev. Lett. 27, 977 (1971).

    Google Scholar 

  14. S. V. Iordanskii,Zh. Eksp. Teor. Fiz. 48, 708 (1965);Sov. Phys. JETP 21, 467 (1965).

    Google Scholar 

  15. J. S. Langer and M. E. Fisher,Phys. Rev. Lett. 19, 560 (1967).

    Google Scholar 

  16. R. J. Donnelly and P. H. Roberts,Phil. Trans. Roy. Soc. 271, 41 (1971).

    Google Scholar 

  17. Y. J. Brown and G. B. Hess,J. Low Temp. Phys. 49, 265 (1982).

    Google Scholar 

  18. R. J. Donnelly and P. H. Roberts,Phys. Rev. Lett. 23, 1492 (1969); C. M. Muirhead, W. F. Vinen, and R. J. Donnelly,Phil. Trans. R. Soc. Lond. A 311, 433 (1984); P. C. Hendryet al., Phil. Trans. R. Soc. Lond. A 332, 387 (1990), and references cited there.

    Google Scholar 

  19. P. W. Anderson,Rev. Mod. Phys. 38, 298 (1966).

    Google Scholar 

  20. E. R. Huggins,Phys. Rev. A 1, 332 (1970). See also E. I. Blount and C. M. Varma,Physical Rev. B 14, 2888 (1976); W. Zimmermann, Jr.,J. Low Temp. Phys. 93, 1003 (1993).

    Google Scholar 

  21. J. T. Tough, inProgress in Low Temperature Physics edited by D. F. Brewer (North-Holland, Amsterdam, 1982), Vol. 8, p. 133.

    Google Scholar 

  22. J. F. Kafkadlidis and J. T. Tough,Cryogenics 31, 705 (1991); P. J. Murphy, J. Castiglione, and J. T. Tough,J. Low Temp. Phys. 92, 307 (1993).

    Google Scholar 

  23. W. F. Vinen,Proc. Roy. Soc A 242, 498 (1957); 243, 400 (1957).

    Google Scholar 

  24. W. F. Vinen, inLiquid Helium edited by G. Careri (Academic Press, New York, 1963), p. 336; and also inQuantum Fluids, edited by D. F. Brewer, (North-Holland, Amsterdam, 1966), p. 74.

    Google Scholar 

  25. K. W. Schwarz,Phys. Rev. B 38, 2398 (1988).

    Google Scholar 

  26. O. Avenel and E. Varoquaux,Phys. Rev. Lett. 55, 2704 (1985). See also E. Varoquaux, O. Avenel, and M. Meisel,Can. J. Phys. 65, 1377 (1987); E. Varoquaux, W. Zimmermann Jr., and O. Avenel inExcitations in Two-Dimensional and Three-Dimensional Quantum Fluids, edited by A. F. G. Wyatt and H. J. Lauter (Plenum Press, New York, 1991), p. 343.

    Google Scholar 

  27. E. Varoquaux, M. W. Meisel, and O. Avenel,Phys. Rev. Lett. 57, 2291 (1986); O. Avenel, E. Varoquaux, and W. Zimmermann Jr., inProceedings of the 19th International Conference on Low Temperature Physics, Physica B 165 &166, 751 (1990).

    Google Scholar 

  28. A. Amar. Y. Sakaki, R. L. Lozes, J. C. Davis, and R. E. Packard,Phys. Rev. Lett. 68, 2624 (1992).

    Google Scholar 

  29. R. E. Packard and S. Vitale,Phys. Rev. B 45, 2512 (1992).

    Google Scholar 

  30. B. P. Beecken and W. Zimmermann, Jr.,Phys. Rev. B 35, 1630 (1987); W. Zimmermann, Jr.,J. Low Temp. Phys. 91, 219 (1993).

    Google Scholar 

  31. G. B. Hess, inLow Temperature Physics — LT 13, edited by K. D. Timmerhaus, W. J. O'Sullivan, and E. F. Hammel (Plenum Press, New York, 1974), Vol. 1, p. 302; G. B. Hess,Phys. Rev. B 15, 5204 (1977).

    Google Scholar 

  32. G. L. Schofield Jr., Ph.D. Thesis, University of Michigan, 1971, (unpublished). B. B. Sabo, Ph.D. Thesis, University of Minnesota, 1973 (unpublished); M. E. Banton,J. Low Temp. Phys. 16, 211 (1974); J. P. Hulin, D. d'Humieres, B. Perrin, and A. Libchaber,Phys. Rev. A 9, 885 (1974); G. E. Watson,J. Low Temp. Phys. 31, 297 (1978).

  33. M. Bonaldi, S. Vitale, and M. Cerdonio,Phys. Rev. B 42, 9865 (1990).

    Google Scholar 

  34. For instance, R. J. Donnelly and P. H. Roberts, Ref. 18 ; G. Volovik,Sov. Phys. JETP Lett. 15, 81 (1972).

    Google Scholar 

  35. M. E. Fisher,Conference on Fluctuations in Superconductors, Asilomar, March 1968 (unpublished).

  36. K. W. Schwarz,Phys. Rev. Lett. 71, 259 (1993).

    Google Scholar 

  37. M. Steingart and W. I. Glaberson,J. Low. Temp. 8, 61 (1972).

    Google Scholar 

  38. Y. J. Brown,J. Low. Temp. Phys. Rev. 54, 155 (1983).

    Google Scholar 

  39. V. L. Ginzburg and L. P. Pitaevskii,Sov. Phys. JETP 7, 858 (1958); E. P. Gross,Nuovo Cimento 20, 454 (1961).

    Google Scholar 

  40. V. L. Ginzburg and A. A. Sobyanin,Sov. Phys. Usp. 19, 773 (1976);31, 289 (1988).

    Google Scholar 

  41. More sophisticated justifications have been offered for theories of this form, for instance, J. S. Langer,Phys. Rev. 167, 183 (1968), and ref. 41.

    Google Scholar 

  42. L. Kramer,Phys. Rev. A 2, 2063 (1970).

    Google Scholar 

  43. P. I. Soininen and N. P. Kopnin,Phys. Rev. B 49, 12087 (1994).

    Google Scholar 

  44. G. G. Ihas, O. Avenel, R. Aarts, and R. Salmelin, and E. Varoquaux,Phys. Rev. Lett. 69, 327 (1992); O. Avenel, G. G. Ihas, and E. Varoquaux,J. Low. Temp. Phys. 93, 1031 (1993); S. Burkhart, M. Bernard, O. Avenel, and E. Varoquaux,Phys. Rev. Lett. 72, 380 (1994).

    Google Scholar 

  45. Yu. G. Mamaladze,Sov. Phys. JETP 25, 479 (1967);Phys. Lett. 27A, 322 (1968).

    Google Scholar 

  46. R. N. Hills and P. H. Roberts,Int. J. Eng. Sci. 15, 305 (1977);J. Phys. C: Solid State Phys. 11, 4485 (1978).

    Google Scholar 

  47. E. Varoquaux, private communication.

  48. W. E. Keller and E. F. Hammel,Cryogenics 5, 245 (1965).

    Google Scholar 

  49. R. J. Donnelly,Experimental Superfluidity (Univ. of Chicago Press, 1967), Chapter 2, p. 34; S. J. Putterman,Superfluid Hydrodynamics (North-Holland, Amsterdam, 1974), Chapter 1, p. 18.

  50. D. S. Greywall and G. Ahlers,Phys. Rev. A 7, 2145 (1973).

    Google Scholar 

  51. For instance, Hulinet al., Ref. 32.

  52. For instance, orifices from Buckbee Mears Co., used by Sabo and by Banton, Ref. 32.

  53. B. P. Beecken and W. Zimmermann, Jr.,J. Vac. Sci. Technol. A 3, 1839 (1985).

    Google Scholar 

  54. J. C. Davis, J. Steinhauer, K. Schwab, Y. M. Mukharsky, A. Amar, Y. Sasaki, and R. E. Packard,Phys. Rev. Lett. 69, 323 (1992).

    Google Scholar 

  55. Judson C. Brown, M. S. Thesis. Univ. of Virginia, 1975 (unpublished).

  56. P. C. Schubert and W. Zimmermann, Jr.,J. Low. Temp. Phys,44, 177 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shifflett, G.M., Hess, G.B. Intrinsic critical velocities in superfluid4He flow through 12-μm diameter orifices near Tλ: Experiments on the effect of geometry. J Low Temp Phys 98, 591–629 (1995). https://doi.org/10.1007/BF00752282

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00752282

Keywords

Navigation