Journal of Low Temperature Physics

, Volume 98, Issue 5–6, pp 549–589 | Cite as

The transverse acoustic response of superfluid3He-B

  • S. Kalbfeld
  • D. M. Kucera
  • J. B. Ketterson


For both normal and superfluid3He, the propagation of a collisionless transverse sound mode is predicted. The study of this mode in the normal fluid has been problematic: it travels only slightly faster than the Fermi velocity and is very highly attenuated. Early theoretical results suggested that transverse sound would not propagate in the superfluid and the experimental study of this mode was not actively pursued. However, recent theoretical work has predicted that this mode should indeed propagate, at sufficiently high frequencies and low temperatures, due to the interaction with the imaginary squashing mode. We present here an extensive experimental study of the transverse acoustic response in the B phase of superfluid3He. These measurements were performed on a short path length (30.5 microns) acoustic cavity, using a continuous wave, single ended, acoustic impedance technique. Simultaneous measurements were made of the longitudinal acoustic response, on an adjacent acoustic cavity of similar geometry. Both sound modes were excited at a frequency of 61 MHz. With this arrangement, well understood features in the longitudinal acoustic response were used as fiducial points for the study of heretofore ambiguous or unobserved features in the transverse acoustic response. As predicted by recent theoretical calculations, the transverse acoustic response was markedly different when the sound frequency was greater than the imaginary squashing mode frequency, as compared to when the sound frequency was less than the imaginary squashing mode frequency. At lower pressures the transverse acoustic response clearly exhibited the signatures of an evolving standing wave pattern (with the transverse sound velocity much less than the longitudinal sound velocity), and as such provides convincing evidence of a propagating transverse mode.


Sound Velocity Acoustic Impedance Transverse Mode Sound Frequency Fermi Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kalbfeld, D. M. Kucera, and J. B. Ketterson,Phys. Rev. B 48, 4160 (1993).Google Scholar
  2. 2.
    S. Kalbfeld, D. M. Kucera, and J. B. Ketterson,Phys. Rev. Lett 71, 2264 (1993).Google Scholar
  3. 3.
    Comprehensive reviews of both normal fluid and superfluid3He are given in: K. H. Benneman and J. B. Ketterson, eds.,The Physics of Liquid and Solid Helium (Wiley, New York, 1978); D. Vollhardt and P. Wölfle,The Superfluid Phases of 3He (Taylor and Francis, New York, 1990); and W. P. Halperin and L. P. Pitaevskii, eds.,Helium Three (Elsevier, New York, 1990).Google Scholar
  4. 4.
    L. D. Landau and E. M. Lifshitz,Course of Theoretical Physics, Vol. 6, Fluid Mechanics (2nd ed.), Chap. 2 (Pergamon, New York, 1987).Google Scholar
  5. 5.
    L. D. Landau,Zh. Eksp. Teor. Phys. 30, 1058 (1956) [Sov. Phys. JETP 3, 591 (1956)].Google Scholar
  6. 6.
    L. D. Landau,Zh. Eksp. Teor. Phys. 32, 59 (1957) [Sov. Phys. JETP 5, 101 (1957)].Google Scholar
  7. 7.
    L. R. Corruccini, J. S. Clarke, N. D. Mermin, and J. W. Wilkins,Phys. Rev. 180, 225 (1969).Google Scholar
  8. 8.
    See the review articles by: E. R. Dobbs and J. Saunders, inProgress in Low Temperature Physics, edited by D. F. Brewer (Noth-Holland, Amsterdam, 1992), Vol. 13; Bimal K. Sarma, J. B. Ketterson, S. Adenwalla, and Zuyu Zhao, inPhysical Acoustics, edited by M. Levy (Academic, San Diego, 1992), Vol. 20; and Zuyu Zhao, S. Adenwalla, Bimal K. Sarma, and J. B. Ketterson,Adv. in Phys. 41, 147 (1992).Google Scholar
  9. 9.
    K. Maki,J. Low Temp. Phys. 16, 465 (1974).Google Scholar
  10. 10.
    M. Combescot and R. Combescot,Phys. Lett. A 58, 181 (1976).Google Scholar
  11. 11.
    K. Maki and H. Ebisawa,J. Low Temp. Phys. 26, 627 (1977).Google Scholar
  12. 12.
    G. F. Moores and J. A. Sauls,J. Low Temp. Phys. 91, 13 (1993).Google Scholar
  13. 13.
    B. S. Shivaram, M. W. Meisel, Bimal K. Sarma, D. B. Mast, W. P. Halperin, and J. B. Ketterson,Phys. Rev. Lett. 49, 1646 (1982).Google Scholar
  14. 14.
    P. R. Roach and J. B. Ketterson,Phys. Rev. Lett. 36, 736 (1976).Google Scholar
  15. 15.
    M. J. Lea, K. J. Butcher, and E. R. Dobbs,Commun, in Phys. 2, 59 (1977).Google Scholar
  16. 16.
    F. P. Milliken, R. W. Richardson, and S. J. Williamson,J. Low Temp. Phys. 45, 409 (1981).Google Scholar
  17. 17.
    E. G. Flowers, R. W. Richardson, and S. J. Williamson,Phys. Rev. Lett. 37, 309 (1976).Google Scholar
  18. 18.
    G. F. Moores, Ph.D. Thesis, Northwestern University, 1993, unpublished.Google Scholar
  19. 19.
    H. Ebisawa,J. Phys. C 13, 6453 (1980).Google Scholar
  20. 20.
    H. Hoøjgaard Jensen, H. Smith, P. Wölfle, K. Nagai, and T. M. Bisgaard,J. Low Temp. Phys. 41, 473 (1980).Google Scholar
  21. 21.
    D. Einzel, H. Hoøjgaard Jensen, H. Smith, and P. Wölfle,J. Low Temp. Phys. 53, 695 (1983).Google Scholar
  22. 22.
    P. R. Roach and J. B. Ketterson,J. Low Temp. Phys. 25, 637 (1976).Google Scholar
  23. 23.
    D. B. Mast, Ph.D. Thesis, Northwestern University, 1982, unpublished; M. W. Meisel. Ph.D. Thesis, Northwestern University, 1983, unpublished; B. S. Shivaram, Ph.D. Thesis, Northwestern University, 1984, unpublished; S. Adenwalla, Ph.D. Thesis, Northwestern University, 1989, unpublished; Zuyu Zhao, Ph.D. Thesis, Northwestern University, 1990, unpublished; S. Kalbfeld, Ph.D. Thesis, Nothwestern University, 1994, unpublished. Copies of these theses may be obtained through University Microfilms International, Ann Arbor, MI.Google Scholar
  24. 24.
    D. S. Greywall,Phys. Rev. B 33, 7520 (1986).Google Scholar
  25. 25.
    B. M. Abraham, O. Brandt, Y. Eckstein, J. B. Ketterson, M. Kuchnir, and P. Roach,Phys. Rev. 187, 273 (1969).Google Scholar
  26. 27.
    J. C. Wheatley,Rev. Mod. Phys. 47, 415 (1975).Google Scholar
  27. 28.
    D. I. Bolef and J. G. Miller, inPhysical Acoustics, edited by W. P. Mason and R. N. Thurston (Academic, New York, 1971), Vol. 8, Chapter 3.Google Scholar
  28. 29.
    P. Woffle,Phys. Rev. B 14, 89 (1976).Google Scholar
  29. 30.
    W. R. Abel, A. C. Anderson, and J. C. Wheatley,Phys. Rev. Lett. 17, 74 (1966).Google Scholar
  30. 31.
    D. B. Mast, Bimal K. Sarma, J. R. Owers-Bradley, I. D. Calder, J.B. Ketterson, and W. P. Halperin,Phys. Rev. Lett. 45, 266 (1980).Google Scholar
  31. 32.
    R. W. Giannetta, A. Ahonen, E. Polturak, J. Saunders, E. K. Zeise, R. C. Richardson, and D. M. Lee,Phys. Rev. Lett. 45, 262 (1980).Google Scholar
  32. 33.
    J. A. Sauls and J. W. Serene,Phys. Rev. B 23, 4798 (1981).Google Scholar
  33. 34.
    D. Einzel,J. Low Temp. Phys. 54, 427 (1984).Google Scholar
  34. 35.
    W. P. Halperin,Physica B & C 109 & 110, 1596 (1982).Google Scholar
  35. 37.
    J. A. Sauls, Private Communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • S. Kalbfeld
    • 1
  • D. M. Kucera
    • 1
  • J. B. Ketterson
    • 1
  1. 1.Department of Physics and AstronomyNorthwestern UniversityEvanstonUSA

Personalised recommendations