Journal of Materials Science

, Volume 17, Issue 5, pp 1311–1319 | Cite as

The tensile stress-strain behaviour of polystyrene in inert and gaseous environments

  • J. C. B. Wu
  • Norman Brown


For the first time the intrinsic tensile stress-strain behaviour of polystyrene was measured in an inert atmosphere (He) from 77 to 350 K. The intrinsic tensile strength decreases monotonically with increasing temperature with completely brittle behaviour below 231 K and crazing without shear flow at higher temperatures. The behaviour in N2, Ar, CH4, CO2, H2S, and N2O was observed with the relative pressure being the important parameter. The softening depended on the square root of the relative pressure. A calculation was made of the concentration of absorbed gas to produce a given amount of softening. The question of why polystyrene is a brittle solid and thus crazes instead of shear flows is discussed.


Polymer Atmosphere Tensile Strength Brittle Polystyrene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Hoare andD. Hull,J. Mater. Sci. 10, (1975) 1861.Google Scholar
  2. 2.
    S. Rabinowitz andP. Beardmore,CRC Crit. Rev., Macromol. Sci., Jan (1972) 1.Google Scholar
  3. 3.
    A. Hiltner, J. A. Kastelic andE. Baer, in “Advances in Polymer Science and Engineering” edited by K. D. Pae, R. D. Morrow and Yu Chen, (Plenum Press, New York, 1972) p. 335.Google Scholar
  4. 4.
    H. G. Olf andA. Peterlin,J. Polym. Sci. Polymer Phys. Ed.,12 (1974) 2209.Google Scholar
  5. 5.
    N. Brown andY. Imai,J. Appl. Phys. 46, (1975) 4130.Google Scholar
  6. 6.
    Y. Imai andN. Brown,Polymer,18 (1977) 298.Google Scholar
  7. 7.
    Idem, J. Mater. Sci. 11 (1976) 419.Google Scholar
  8. 8.
    S. Fischer andN. Brown,J. Appl Phys. 44 (1973) 4322.Google Scholar
  9. 9.
    J. B. C. Wu andN. Brown,Mater. Sci. And Eng. 44 (1980) 121.Google Scholar
  10. 10.
    G. J. Van Amerongen,Rubb. Chem. Technol. 37 (1964) 1065.Google Scholar
  11. 11.
    V. Stannett, in “Diffusion in Polymers” Edited by J. Crank and G. S. Park (Academic Press, London and New York Chap. 2.Google Scholar
  12. 12.
    J. H. Hildebrand andR. L. Scott, “The Solubility of Nonelectrolytes” (Dover Publications, New York, 1964) p. 134.Google Scholar
  13. 13.
    P. J. Flory, “Principles of Polymer Chemistry” (Cornell University Press, Ithica, New York, 1953) p. 495Google Scholar
  14. 14.
    A. S. Argon, J. G. Hanook andM. M. Salama,Fracture 1 (1977) ICF 4 p. 445.Google Scholar
  15. 15.
    E. J. Kramer,J. Mater. Sci. 14 (1978) 1381.Google Scholar
  16. 16.
    E. Smith, “The Mechanics and Physics of Fracture” (The Metals Society, London, 1975) p. 47.Google Scholar
  17. 17.
    S. T. Wellinghoff andE. Baer,J. Appl. Polymer. Sci. 22 (1978) 2025.Google Scholar
  18. 18.
    N. Brown,J. Macromol. Sci. Phys. B19 (3) (1981) 387.Google Scholar
  19. 19.
    Y. Imai andN. Brown,J. Polymer. Sci. 14 (1976) 723.Google Scholar
  20. 20.
    F. Din (ED) “Thermodynamic Functions of Gases”, Vol. 3 (Butterworths, London, 1962) p. 72.Google Scholar
  21. 21.
    D. W. Van Krevlen, “Properties of Polymers”, 2nd edn. (Elsevier, Amsterdam, 1976).Google Scholar

Copyright information

© Chapman and Hall Ltd 1982

Authors and Affiliations

  • J. C. B. Wu
    • 1
  • Norman Brown
    • 1
  1. 1.Department of Materials Science and Engineering and Laboratory for Research on the Structure of MatterUniversity of PennsylavaniaPhiladelphiaUSA

Personalised recommendations