Journal of Materials Science

, Volume 17, Issue 12, pp 3525–3540 | Cite as

The nature of the lamellar overgrowth in polyethylene shish-kebab fibres as revealed by small-angle X-ray scattering and electron microscopy

  • P. F. Van Hutten
  • A. J. Pennings
  • A. M. Kiel


The melting, dissolution and crystallization behaviour of the lamellar overgrowth in polyethylene shish-kebab fibres have been studied by small-angle X-ray scattering and electron microscopy. SAXS experiments in which fibres were heatedin situ demonstrated the irreversible reorganization of the lamellar overgrowth already at 60° C. Reorganization continued in an inhomogeneous manner until the fibre lost its porosity around 140° C. The morphology that developed upon cooling depended on the crystallization temperature as well as on the maximum temperature attained before crystallization. Transmission electron microscopy observations showed the influence of molecular weight on aggregation. The SAXS patterns obtained duringin situ dissolution experiments disclosed that the lamellae dissolved in dodecane above 115° C. Recrystallization of the lamellae on to the backbones was almost complete within 10 min at 110° C. These high temperatures, as compared with single-crystal behaviour, indicate that the cilia nucleated with exceptionally high stem lengths on to the backbones. SAXS of fibres elongated to a maximum ratio of 1.5 at 90° C demonstrated the role of the lamellar overgrowth as a matrix between the elementary fibrils. The shish-kebab morphology could be restored after elongation by selective dissolution of the lamellae and recrystallization.


Crystallization Recrystallization Fibril Crystallization Behaviour Dodecane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Zwijnenburg andA. J. Pennings,J. Polymer Sci. Polymer Lett. Ed. 14 (1976) 339.Google Scholar
  2. 2.
    A. J. Pennings andK. E. Meihuizen, “Ultra-High Modulus Polymers”, edited by A. Ciferri and I. M. Ward (Applied Science Publishers, London, 1979) p. 117.Google Scholar
  3. 3.
    J. Smook, J. C. M. Torfs, P. F. Van Hutten andA. J. Pennings,Polymer Bull. 2 (1980) 293.Google Scholar
  4. 4.
    J. Smook, J. C. M. Torfs andA. J. Pennings,Makromol. Chem. 182 (1981) 3351.Google Scholar
  5. 5.
    J. Smook, to be published (1983).Google Scholar
  6. 6.
    P. F. Van Hutten andA. J. Pennings,Makromol. Chem. Rapid Commun. 1 (1980) 477.Google Scholar
  7. 7.
    A. J. Pennings andJ. M. A. A. Van Der Mark,Rheol. Acta 10 (1971) 174.Google Scholar
  8. 8.
    D. Krueger andG. S. Y. Yeh,J. Macromol. Sci.-Phys. B6 (1972) 431.Google Scholar
  9. 9.
    A. J. Pennings, C. J. H. Schouteten andA. M. Kiel,J. Polymer Sci. C 38 (1972) 167.Google Scholar
  10. 10.
    A. Keller andF. M. Willmouth,J. Macromol. Sci.-Phys. B6 (1972) 493.Google Scholar
  11. 11.
    D. T. Grubb andA. Keller,Colloid Polymer Sci. 256 (1978) 218.Google Scholar
  12. 12.
    A. J. Pennings andA. Zwijnenburg,J. Polymer Sci. Polymer Phys. Ed. 17 (1979) 1011.Google Scholar
  13. 13.
    A. J. Pennings, R. Lageveen andR. S. De Vries,Colloid Polymer Sci. 255 (1977) 532.Google Scholar
  14. 14.
    M. J. Hill, P. J. Barham andA. Keller,ibid. 258 (1980) 1023.Google Scholar
  15. 15.
    M. J. Hill andA. Keller,ibid. 259 (1981) 335.Google Scholar
  16. 16.
    A. Zwijnenburg, P. F. Van Hutten, A. J. Pennings andH. D. Chanzy,ibid. 256 (1978) 729.Google Scholar
  17. 17.
    P. F. Van Hutten andA. J. Pennings,J. Polymer Sci. Polymer Phys. Ed. 18 (1980) 927.Google Scholar
  18. 18.
    P. F. Van Hutten, PhD thesis, Groningen (1981).Google Scholar
  19. 19.
    A. J. Pennings, J. M. A. A. Van Der Mark andA. M. Kiel,Kolloid Z.Z. Polymere 237 (1970) 336.Google Scholar
  20. 20.
    P. Smith, P. Lemstra, B. Kalb andA. J. Pennings,Polymer Bull. 1 (1979) 733.Google Scholar
  21. 21.
    J. Smook, M. Flinterman andA. J. Pennings,ibid. 2 (1980) 775.Google Scholar
  22. 22.
    A. Zwijnenburg andA. J. Pennings,Colloid Polymer Sci. 254 (1976) 868.Google Scholar
  23. 23.
    E. W. Fischer, R. Martin, G. F. Schmidt andG. Strobl, Proceedings of IUPAC Symposium on Macromolecules, Toronto (1968); Preprints Vol. I A6–17.Google Scholar
  24. 24.
    J. M. Schultz, E. W. Fischer, O. Schaumburg andH. A. Zachmann,J. Polymer Sci. Polymer Phys. Ed. 18 (1980) 239.Google Scholar
  25. 25.
    J. M. Schultz, W. H. Robinson andG. M. Pound,J. Polymer Sci. A-2 5 (1967) 511.Google Scholar
  26. 26.
    Y. Nukushina, Y. Itoh andE. W. Fischer,J. Polymer Sci. B 3 (1965) 383.Google Scholar
  27. 27.
    J. V. Dawkins, P. J. Holdsworth andA. Keller,Makromol. Chem. 118 (1968) 361.Google Scholar
  28. 28.
    E. W. Fischer,Kolloid Z. Z. Polymere 231 (1969) 458.Google Scholar
  29. 29.
    Idem, Pure Appl. Chem. 26 (1971) 385.Google Scholar
  30. 30.
    G. Porod,Acta Phys. Austriaca 2 (1948) 255.Google Scholar
  31. 31.
    I. C. Sanchez andE. A. Dimarzio,J. Chem. Phys. 55 (1971) 893.Google Scholar
  32. 32.
    S. Gogolewski, M. Gasiorek, K. Czerniawska andA. J. Pennings,Colloid Polymer Sci. 260 (1982) to be published.Google Scholar
  33. 33.
    J. C. M. Torfs andA. J. Pennings,J. Appl. Polymer Sci. 26 (1981) 303.Google Scholar
  34. 34.
    A. J. Pennings,J. Crystal Growth 48 (1980) 574.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • P. F. Van Hutten
    • 1
  • A. J. Pennings
    • 1
  • A. M. Kiel
    • 2
  1. 1.Department of Polymer ChemistryState University of GroningenAG GroningenThe Netherlands
  2. 2.Central LaboratoryDSMMD GeleenThe Netherlands

Personalised recommendations