Skip to main content
Log in

Semiempirical structure analysis for long-wave X-ray emission satellites. 2. Period II and III transition-element hydrides

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Conclusions

Comparison with OCM calculations shows that the Rydberg states and states in the continuum are very important in configuration interaction for the hydrides, which is due to the very small numbers of vacant MO included in the CI basis (only one each for HF and HCl). Therefore, the hydrides are the most inconvenient substances for LWS structure calculations for x-ray spectra by this method. Nevertheless, here again the role of the vacant MO in the CI is important. One naturally expects that the role of those MO will increase considerably as their number increases (see in particular [17]).

The conclusions are that for lines corresponding to transitions from the upper filled MO, the long-wave satellites have little effect on the spectrum shape but alter the intensities by 3–7%. As one proceeds to the deeper MO, the role of the LWS increases rapidly, and leads in fact to the diagram lines vanishing. For the hydrides, that range begins with the MO for which the ionization potentials are 15–20 eV. Here one gets the L spectra of the corresponding elements with complicated LWS. One can say that at these ionization potentials, one gets a multielectron limit, beyond which the one-electron approach to interpreting the spectra becomes inadequate. The Kα, β spectra for these compounds are almost undistorted by long-wave satellites, and one can use the changes in intensity ratio in the K spectra for the interacting compounds to draw conclusions on the participation of the orbitals in the bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. V. F. Demekhin, T. M. Poltinnikov, Yu. I. Bairachnyi, et al., Izv. AN SSSR, Ser. Fiz. Nauk,38, 593–598 (1974).

    Google Scholar 

  2. V. F. Demekhin, G. F. Lemeshko, and A. T. Shuvaev, Izv. Akad. Nauk SSSR, Ser. Fiz. Nauk,38, 587–592 (1974).

    Google Scholar 

  3. V. F. Demekhin, V. L. Sukhorukov, and Yu. I. Bairachnyi, Dep. VINITI No. 617-74.

  4. V. F. Demekhin, V. L. Sukhorukov, and Yu. I. Bairachnyi, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk,68, No. 9, 68–72 (1975).

    Google Scholar 

  5. V. F. Demekhin, V. L. Sukhorukov, V. A. Yavna, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. Nauk,40, No. 2, 255–262 (1976).

    Google Scholar 

  6. V. L. Sukhorukov, S. A. Yavna, and V. F. Demekhin, Fiz. Tverd. Tela,24, No. 6, 1856–1858 (1983).

    Google Scholar 

  7. V. L. Sukhorukov, V. F. Demekhin, V. A. Yavna, et al., Koord. Khim.,9, No. 2, 158–167 (1983).

    Google Scholar 

  8. V. L. Sukhorukov, V. F. Demekhin, S. A. Yavna, and I. D. Petrov, Zh. Strukt. Khim.,27, No. 1, 26–33 (1986).

    Google Scholar 

  9. V. L. Sukhorukov, I. D. Petrov, B. L. Sukhorukov, and V. F. Demekhin, Khim. Fiz.,3, No. 9, 1337–1339 (1984).

    Google Scholar 

  10. A. P. Biryukov, Ph.D. Thesis, RGU, Rostov-on-Don (1986), p. 22.

  11. B. M. Lagutin, Ph. D. Thesis, RGU, Rostov-on-Don (1986), p. 22.

  12. I. D. Petrov, Ph. D. Thesis, RGU, Rostov-on-Don (1986), p. 23.

  13. J. Schirmer, L. S. Cederbaum, W. Domcke, and W. von Niessen, Chem. Phys.,26, 149–153 (1977).

    Google Scholar 

  14. L. S. Cederbaum, J. Schirmer, W. Domcke, and W. von Niessen, J. Phys. B, Atom. Mol. Phys.,10, L549-L553 (1977).

    Google Scholar 

  15. J. Schirmer, W. Domcke, L. S. Gederbaum, et al., Personal Communication.

  16. A. V. Kondratenko, L. N. Mazalov, and I. A. Topol', Highly Excited States in Molecules [in Russian], Nauka, Sib. Otd., Novosibirsk (1982).

    Google Scholar 

  17. I. N. Timonova, V. V. Murakhtanov, and L. N. Mazalov, Zh. Strukt. Khim.,30, No. 2, 80–92 (1989).

    Google Scholar 

  18. I. N. Timonova and V. V. Murakhtanov, Zh. Strukt. Khim.,30, No. 1, 168–169 (1989).

    Google Scholar 

  19. A. A. Voityuk and L. N. Mazalov, Zh. Strukt. Khim.,23, No. 5, 181–182 (1982).

    Google Scholar 

  20. K. S. Krasnov, N. S. Timoshinin, T. G. Danilova, and S. V. Khandozhko, Molecular Constants for Inorganic Compounds [in Russian], Khimiya, Leningrad (1968).

    Google Scholar 

  21. R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc.,97, No. 6, 1285–1293 (1975).

    Google Scholar 

  22. H. Ågren and J. Nordgren, Theoret. Chim. Acta,58, 111–119 (1981).

    Google Scholar 

  23. M. S. Banna and D. A. Shirley, J. Chem. Phys.,63, No. 1, 4759–4766 (1975).

    Google Scholar 

  24. V. I. Nefedov, Molecular Structures and the Chemical Bond [in Russian], VINITI, Moscow (1975), Vol. 3, p. 71.

    Google Scholar 

  25. R. A. Mattson and R. C. Ehlert, J. Chem. Phys.,48, No. 12, 5465–5470 (1968).

    Google Scholar 

  26. E. S. Gluskin, Ph.D. Thesis, INKh SO AN SSSR, Novosibirsk (1973).

  27. J. Nordgren, H. Ågren, L. O. Werme, et al., J. Phys. B, Atom. Mol. Phys.,9, No. 2, 295–302 (1976).

    Google Scholar 

  28. G. N. Dolenko, S. A. Krupoder, and L. N. Mazalov, Zh. Strukt. Khim.,20, No. 2, 334–336 (1980).

    Google Scholar 

  29. J. Nordgren, L. O. Werme, H. Ågren, et al., J. Phys. B, Atom. Mol. Phys.,8, No. 2, L18-L19 (1975).

    Google Scholar 

  30. H. Siegbahn, L. Asplund, and P. Kelfve, Chem. Phys. Lett.,35, No. 3, 330–335 (1975).

    Google Scholar 

  31. H. Ågren, S. Svensson, and V. I. Wahlgren, ibid., 336–344 (.

    Google Scholar 

  32. S. Svensson, H. Ågren, and V. I. Wahlgren, Chem. Phys. Lett.,38, No. 1, 1–8 (1976).

    Google Scholar 

  33. H. Ågren and H. Siggbahn, Chem. Phys. Lett.,69, No. 3, 424–429 (1980).

    Google Scholar 

  34. A. V. Okotrub, L. N. Mazalov, and V. D. Yumatov, Zh. Strukt. Khim.,25, No. 6, 66–70 (1984).

    Google Scholar 

  35. V. D. Yumatov, A. V. Okotrub, L. N. Mazalov, et al., J. FLuorine Chem.,28, 257–272 (1985).

    Google Scholar 

  36. L. N. Mazalov, V. D. Yumatov, V. V. Murakhtanov, et al., X-Ray Spectra for Molecules [in Russian], Nauka, Sib. Otdel., Novosibirsk (1977).

    Google Scholar 

  37. R. E. LaVilla, J. Chem. Phys.,62, 2209–2212 (1975).

    Google Scholar 

  38. R. Roberge and D. R. Salahub, J. Chem. Phys.,70, 1177–1186 (1979).

    Google Scholar 

  39. V. D. Yumatov, G. G. Furin, A. V. Okotrub, et al., Izv. Akad. Nauk SSSR, Ser. Khim. Nauk, 5, 1090–1095 (1983).

    Google Scholar 

  40. G. G. Furin, G. G. Yakobson, V. D. Yumatov, et al., J. Fluorine Chem.,28, 241–256 (1985).

    Google Scholar 

  41. J. Berkowitz, Chem. Phys. Lett.,11, 21–26 (1971).

    Google Scholar 

  42. A. Meisel, G. Leonhardt, and R. Sargan, X-Ray Spectra and the Chemical Bond [Russian translation], Naukova Dumka, Kiev (1981).

    Google Scholar 

  43. A. V. Nikolaev, L. N. Mazalov, V. V. Murakhtanov, et al., Dokl. Akad. Nauk SSSR,191, No. 1, 144–147 (1970).

    Google Scholar 

Download references

Authors

Additional information

Inorganic Chemistry Institute, Siberian Branch, USSR Academy of Sciences. Translated from Zhurnal Strukturnol Khimii, Vol. 31, No. 1, pp. 74–83, January–February, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timonova, I.N., Murakhtanov, V.V. & Mazalov, L.N. Semiempirical structure analysis for long-wave X-ray emission satellites. 2. Period II and III transition-element hydrides. J Struct Chem 31, 64–72 (1990). https://doi.org/10.1007/BF00752015

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00752015

Keywords

Navigation