Skip to main content
Log in

Cooling of3He-4He dilute solution down to 97 μK. Thermal boundary resistance between dilute solution and metal powder

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have cooled a3He-4He dilute solution down to 97 μK, which is the lowest temperature ever been achieved in a dilute mixture. However, there is no sign of the superfluid transition of3He quasiparticles in the solution. In the sub-millikelvin region, we have measured the thermal boundary resistance between the solutions and sintered metal powder as a function of temperature T. We find that the thermal boundary resistence is proportional to T−2 below 1 mK and that the resistance shows a strong dependence on magnetic fields below 0.1 T. These results suggest that the magnetic coupling is dominant in this temperature region. We have also estimated the heat leak into the dilute solution. It is found that the heat leak is proportional to the power of one third of inverse time, and the main source of the heat leak is ascribed to the viscous movement of3He quasiparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Baym and C. J. Pethick, “The Properties of Liquid and Solid Helium” Vol. 2, K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1978), p. 123.

    Google Scholar 

  2. J. Bardeen, G. Baym, and D. Pines,Phys. Rev. 156, 207 (1967), J. C. Owen,Phys. Rev. Lett. 47, 586 (1981).

    Google Scholar 

  3. G. E. Watson, J. D. Reppy, and R. C. Richardson,Phys. Rev. 188, 384 (1969); J. Landau, J. T. Tough, N. R. Brubaker, and D. O. Edwards,Phys. Rev. Lett. 23, 283 (1969).

    Google Scholar 

  4. P. G. van de Haar, G. Frossati, and K. S. Bedell,J. Low. Temp. Phys. 77, 35 (1989).

    Google Scholar 

  5. H. Chocholacs, Julich Report No. 1901 (1984); J. R. Bradley, H. Chocholacs, Ch. Buchal, M. Kubota, and F. Pobell,Phys. Rev. Lett. 51, 2120 (1983).

  6. H. Ishimoto, H. Fukuyama, N. Nishida, Y. Miura, Y. Takano, T. Fukuda, T. Tazaki, and S. Ogawa,J. Low. Temp. Phys. 77, 133 (1989).

    Google Scholar 

  7. G.-H. Oh, M. Nakagawa, H. Akimoto, O. Ishikawa, T. Hata, and T. Kodama,Physica B 165 & 166, 527 (1990).

    Google Scholar 

  8. R. Konig, P. Smeibidl and F. Pobell,J. Low Temp. Phys. 89, 469 (1992).

    Google Scholar 

  9. R. M. Muller, C. Buchal, H. R. Folle, M. Kubota, and F. Pobell,Cryogenics 20, 395 (1980).

    Google Scholar 

  10. H. Akimoto, O. Ishikawa, G. -H. Oh, M. Nakagawa, T. Hata, and Kodama,J. Low Temp. Phys. 82, 295 (1991).

    Google Scholar 

  11. D. I. Bradley, A. M. Guenault, V. Keith, C. J. Kennedy, I. E. Miller, S. G. Mussertt, G. R. Pickett, and W. P. Pratt, Jr.J. Low Temp. Phys. 57, 359 (1984).

    Google Scholar 

  12. D. S. Greywall,Phys. Rev. B 33, 7520 (1986).

    Google Scholar 

  13. D. I. Bradley and R. Oswald,J. Low Temp. Phys. 80, 89 (1990).

    Google Scholar 

  14. R. Radebaugh and J. D. Siegwarth,Cryogenics 11, 368 (1971).

    Google Scholar 

  15. N. Masuhara, D. Candela, D. O. Edwards, R. F. Hoyt, H. N. Sholz, D. S. Sherrill, and R. Combescot,Phys. Rev. Lett. 51, 1168 (1984).

    Google Scholar 

  16. T. A. Alvesalo, H. K. Collan, M. T. Loponen, O. V. Lounasmaa, and M. C. Veuro,J. Low Temp. Phys. 19, 1 (1975); C. N. Archie, T. A. Alvesalo, J. D. Reppy, and R. C. Richardson,J. Low Temp. Phys. 42, 295 (1981).

    Google Scholar 

  17. P. R. Roach, J. B. Ketterson, and M. Kuchnir,Rev., Sci. Instr. 1 43, 898 (1972).

    Google Scholar 

  18. D. A. Ritchie, J. Saunders and D. F. Brewer,Proc. 17th Int. Conf. on Low Temperature Physics (North-Holland, Amsterdam) p. 743 (1984); H. Chocholacs, R. M. Mueller, J. Owers-Bradley, C. Buchal, M. Kubota and F. Pobell, Julich Report No. 1901 (1984).

    Google Scholar 

  19. D. D. Osheroff and L. R. Corruccini,Phys. Lett. 82A, 38 (1981).

    Google Scholar 

  20. G. Frossati,J. de Physique C 6, 1578 (1987).

    Google Scholar 

  21. M. Schwark, F. Pobell, M. Kubota, and R. M. Mueller,J. Low Temp. Phys. 58, 171 (1985).

    Google Scholar 

  22. M. Kolac, B. S. Neganov, A. Sahling, and S. Sahling,J. Low Temp. Phys. 68, 285 (1987).

    Google Scholar 

  23. M. Schwark, F. Pobell, W. P. Halperin, Ch. Buchal, J. Hanssen, M. Kubota, and R. M. Mueller,J. Low Temp. Phys. 53, 685 (1983).

    Google Scholar 

  24. S. Yorozu, M. Hiroi, H. Fukuyama, H. Akimoto, H. Ishimoto, and S. Ogawa,Phys. Rev. B 45, 12942 (1992).

    Google Scholar 

  25. H. Akimoto and H. Ishimoto, ISSP, The Tokyo University, (private communication), In recent experiments using a NbTi wire up to 12T, they observed that both resonance frequency and width increase with increasing magnetic field in vacuum and that the resonance width was field independent in liquid3He below 15 mK due to the large viscosity.

  26. T. Nakayama,Progress in Low Temperature Physics, Vol. XII, D. F. Brewer, ed. (Eisevier Science Publishers B. V., 1989).

  27. T. Perry, K. DeConde, J. A. Sauls, and D. L. Stein,Phys. Lett. 48, 1831 (1982).

    Google Scholar 

  28. D. D. Osheroff and R. C. Richardson,Phys. Rev. Lett. 54, 1178 (1985).

    Google Scholar 

  29. D. A. Ritchie, J. Saunders and D. F. Brewer,Proc. 17th Int. Conf. on Low Temperature Physics, LT-17 (North-Holland, Amsterdam, 1984), p. 743.

    Google Scholar 

  30. D. A. Ritchie, J. Saunders and D. F. Brewer,Phys. Rev. Lett. 59, 465 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, G.H., Ishimoto, Y., Kawae, T. et al. Cooling of3He-4He dilute solution down to 97 μK. Thermal boundary resistance between dilute solution and metal powder. J Low Temp Phys 95, 525–546 (1994). https://doi.org/10.1007/BF00751787

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00751787

Keywords

Navigation