Advertisement

Journal of Low Temperature Physics

, Volume 100, Issue 5–6, pp 463–499 | Cite as

Adiabatic expansion of3He in4He at very low temperatures

  • A. P. J. Voncken
  • A. T. A. M. de Waele
Regular Articles

Abstract

In this paper the results of the investigation of a one-shot cooling technique, called adiabatic expansion of3He in superfluid4He, are reported. The expansion cooler basically consists of an expansion cell and a4He reservoir connected by a superleak. In the expansion cell nearly pure3He is gradually diluted to a saturated mixture by the injection of superfluid4He from the4He reservoir. The expansion of the3He produces cooling, which, in the ideal (isentropic) case can lower the temperature by a factor 4.56. In practice, the performance of this cooling method is limited by irreversibilities and heat leaks. In this paper several irreversible processes such as heat conduction, viscous effects, and supercritical4He flow, have been analyzed. Furthermore the effect of3He in a sinter layer in the expansion cell is discussed. The experiments have shown that the fountain pressure in the4 He reservoir is very suitable for driving the4He in and out of the expansion cell. During an expansion/extraction the4He chemical potential difference across the superleak is zero. The realised cooling factor, defined as the ratio of the initial temperature and the final temperature, is about 3.5 for initial temperatures between 20 mK to 190 mK. This value is lower than the ideal factor of 4.56 that can be obtained for isentropic expansions. The discrepancy is mainly due to the relatively large heat leak. The lowest temperature obtained in this investigation was 5.7 mK. The analyses have revealed no fundamental limitations for obtaining lower temperatures.

Keywords

Heat Conduction Magnetic Material Initial Temperature Expansion Cell Final Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. Bradley, A. M. Guénault, V. Kieth, C. J. Kennedy, J. E. Miller, S. G. Musset, G. R. Pickett, and W. P. Pratt Jr.,J. Low Temp. Phys. 57, 359 (1984).Google Scholar
  2. 2.
    K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekovski, R. M. Mueller, and F. Pobell,J. Low Temp. Phys. 73, 101 (1988).Google Scholar
  3. 3.
    G. H. Oh, Y. Ishimoto, T. Kawae, M. Nakagawa, O. Ishikawa, T. Hata, and T. Kodama,Physica B 194–196, 855 (1994).Google Scholar
  4. 4.
    O. V. Lounasmaa,Experimental Principles and Methods Below 1 K (Academic Press, London, 1974).Google Scholar
  5. 5.
    F. Pobell,Matter and Methods at Low Temperatures (Springer-Verlag, Berlin, 1992).Google Scholar
  6. 6.
    J. Bardeen, G. Baym, and D. Pitles,Phys. Rev. Lett. 17, 372 (1966).Google Scholar
  7. 7.
    J. Bardeen, G. Baym, and D. Pines,Phys. Rev. 156, 207 (1967).Google Scholar
  8. 8.
    K. D. Ivanova and A. E. Meyerovich,Sov. Phys. JETP 64, 964 (1986).Google Scholar
  9. 9.
    M. Y. Kagan and A. V. Chubukov,Zh. Eksp. Teor. Fiz. Pisma 47, 525 (1988).Google Scholar
  10. 10.
    H. London,Proceedings of the International Conference on Low-Temperature Physics (Oxford, 1951), p. 157.Google Scholar
  11. 11.
    H. London, G. R. Clarke, and E. Mendoza,Phys. Rev. 132, 2373 (1963).Google Scholar
  12. 12.
    D. O. Edwards,Proceedings of the 1970 Ultralow Temperature Symposium, NRL report7133, 27 (1970).Google Scholar
  13. 13.
    A. P. J. Voncken and A. T. A. M. de Waele,Physica B 194–196, 51 (1994).Google Scholar
  14. 14.
    N. H. Pennings, K. W. Taconis, and R. de Bruyn Ouboter,Physica 56, 171 (1971).Google Scholar
  15. 15.
    H. London, D. Phillips, and G. P. Thomas, inProc. 11th International Conference on Low Temperature Physics, J. F. Allen, D. M. Finlanson, and D. M. McCall, eds. (St. Andrews, 1968), p. 649.Google Scholar
  16. 16.
    V. A. Mikheev, E. Y. Rudavskii, V. K. Chagovets, and G. A. Sheshin,Sov. J. Low Temp. Phys. 17, 233 (1991).Google Scholar
  17. 17.
    J. G. M. Kuerten, C. A. M. Castelijns, A. T. A. M. de Waele, and H. M. Gijsman,Cryogenics 25, 419 (1985).Google Scholar
  18. 18.
    J. W. Serene and D. Rainer,Phys. Reports 101, 221 (1983).Google Scholar
  19. 19.
    A. T. A. M. de Waele and J. G. M. Kuerten,Physica B 160, 143 (1989).Google Scholar
  20. 20.
    H. C. Kramers, J. D. Wasscher, and C. J. Gorter,Physica 18, 625 (1952).Google Scholar
  21. 21.
    S. R. de Groot and P. Mazur,Nonequilibrium Thermodynamics (North-Holland, Amsterdam, 1969).Google Scholar
  22. 22.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot,Transport Phenomena (John Wiley & Sons, Singapore, 1960).Google Scholar
  23. 23.
    W. R. Abel, R. T. Johnson, J. C. Wheatley, and W. Zimmermann,Phys. Rev. Lett. 18, 773 (1967).Google Scholar
  24. 24.
    D. S. Greywall,Phys. Rev. B 29, 4933 (1984).Google Scholar
  25. 25.
    J. Crank,Free and Moving Boundary Problems (Clarendon Press, Oxford, 1984).Google Scholar
  26. 26.
    A. P. J. Voncken,Adiabatic Expansion of 3 He in Superfluid 4 He, PhD thesis, Eindhoven (1994).Google Scholar
  27. 27.
    J. C. H. Zeegers, R. G. K. M. Aarts, A. T. A. M de Waele, and H. M. Gijsman,Phys. Rev. B 45, 12442 (1992).Google Scholar
  28. 28.
    W. M. van Alphen, R. de Bruyn Ouboter, J. Olijhoek, and K. W. Taconis,Physica 40, 490 (1969).Google Scholar
  29. 29.
    G. M. Coops, A. T. A. M de Waele, and H. M. Gijsman,Cryogenics 19, 659 (1979).Google Scholar
  30. 30.
    C. A. M. Castelijns, J. G. M. Kuerten, A. T. A. M. de Waele, and H. M. Gijsman,Phys. Rev. B 32, 2870 (1985).Google Scholar
  31. 31.
    J. P. Franck, F. D. Manchester, and D. L. Martin,Proc. Roy. Soc. London A 263, 494 (1961).Google Scholar
  32. 32.
    J. N. Haasbroek,Thermal Conductivity at Very Low Temperatures, PhD thesis, Leiden (1971).Google Scholar
  33. 33.
    J. C. H. Zeegers, A. T. A. M. de Waele, and H. M. Gijsman,J. of Low Temp. Phys. 84, 37 (1991).Google Scholar
  34. 34.
    M. Jutzler, B. Schröder, K. Gloos, and F. Pobell,Z. Phys. B 64, 115 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. P. J. Voncken
    • 1
  • A. T. A. M. de Waele
    • 1
  1. 1.Eindhoven University of TechnologyMB EindhovenThe Netherlands

Personalised recommendations