Journal of Low Temperature Physics

, Volume 100, Issue 5–6, pp 441–461 | Cite as

NMR study of the effect of flow on3He-B

  • D. Kruppa
  • D. F. Brewer
  • J. Hutchins
  • D. Waxman
Regular Articles
  • 14 Downloads

Abstract

We have used a plastic diaphragm to generate flow in superfluid3HeB, through a cylindrical geometry, whilst monitoring the transverse NMR frequency. It was found that the critical flow velocity needed to induce NMR frequency shifts was dependent on the magnetic field. The results are explained by a numerical calculation of the texture in the3HeB, under the influences of magnetic field, fluid flow and surface energy terms. Also presented are measurements of the B phase NMR longitudinal frequency, derived from the magnitude of the flow-induced change in the transverse frequency. A flow-induced texture transition, which caused a dramatic narrowing of the NMR lineshape, is described.

Keywords

Magnetic Field Flow Velocity Fluid Flow Frequency Shift Energy Term 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. F. Wheatley,Rev. Mod. Phys. 47, 415 (1975); A. J. Leggett,Rev. Mod. Phys. 47, 331 (1975); D. L. Lee and R. C. Richardson, inThe Physics of Liquid and Solid Helium (Part II, Chap. 4), K. H. Bennemann and J. B. Ketterson, eds. (Wiley Interscience, New York, 1978); D. Vollhardt and P. Wölfle,The Superfluid Phases of Helium 3 (Taylor and Francis, 1990).Google Scholar
  2. 2.
    W. F. Brinkman, and M. C. Cross, inProgress in Low Temp. Physics (Vol. VIIa), D. F. Brewer, ed. (North Holland Publishing Company, 1978).Google Scholar
  3. 3.
    J. Hutchins, D. F. Brewer, and D. Kruppa,Phys. Rev. Lett. 55, 1410 (1985).Google Scholar
  4. 4.
    A. L. Fetter,J. Low Temp. Phys. 23, 245 (1976).Google Scholar
  5. 5.
    P. Sikora, E. F. Hammel, and W. E. Keller,Physica 32, 1693 (1966).Google Scholar
  6. 6.
    D. F. Brewer, in75th Jubilee Conf. on Helium-4, J. Armitage, ed. (World Scientific, 1983), p. 64;Phys. Rev. Lett, (comment)57, 920 (1986);Can. J. Phys. 65, 1481 (1987).Google Scholar
  7. 7.
    W. M. van Alphen, R. De Bruyn Ouboter, K. W. Taconis, and E. van Spronsen,Physica 39, 109 (1968).Google Scholar
  8. 8.
    R. K. Galkiewicz and R. B. Hallock,Phys. Rev. B 15, 2671 (1977).Google Scholar
  9. 9.
    O. Avenel and E. Varoquaux,Phys. Rev. Lett. 55, 2704 (1985).Google Scholar
  10. 10.
    D. F. Brewer, A. J. Dahm, J. Hutchins, W. S. Truscott, and D. N. Williams,J. de Physique C6, 351 (1978).Google Scholar
  11. 11.
    C. N. Archie, PhD. thesis, Cornell University, unpublished (1978).Google Scholar
  12. 12.
    H. Smith, W. F. Brinkman, and S. Engelsberg,Phys. Rev. B 15, 199 (1977).Google Scholar
  13. 13.
    P. J. Hakonen, O. T. Ikkala, S. T. Islander, O. V. Lounasmaa, and G. E. Volovik,J. Low Temp. Phys. 53, 425 (1983).Google Scholar
  14. 14.
    G. F. Spencer and G. G. Ihas,J. Low Temp. Phys. 77, 61 (1989).Google Scholar
  15. 15.
    P. J. Hakonen, M. Krusius, M. M. Salomaa, R. H. Salmelin, J. T. Simola, A. D. Gongadze, G. E. Vachnadze, and G. A. Kharadze,J. Low. Temp. Phys. 76, 225 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • D. Kruppa
    • 1
  • D. F. Brewer
    • 1
  • J. Hutchins
    • 1
  • D. Waxman
    • 1
  1. 1.Physics LaboratoryUniversity of SussexSussexUK

Personalised recommendations