Advertisement

Journal of Bioenergetics and Biomembranes

, Volume 17, Issue 3, pp 183–200 | Cite as

Divalent cations and the phosphatase activity of the (Na + K)-dependent ATPase

  • Joseph D. Robinson
Research Articles

Abstract

Phosphatase activity of a kidney (Na + K)-ATPase preparation was optimally active with Mg2+ plus K+. Mn2+ was less effective and Ca2+ could not substitute for Mg2+. However, adding Ca2+ with Mg2+ or substituting Mn2+ for Mg2+ activated it appreciably in the absence of added K+, and all three divalent cations decreased apparent affinity for K+. Inhibition by Na+ decreased with higher Mg2+ concentrations, when Ca2+ was added, and when Mn2+ was substituted for Mg2+. Dimethyl sulfoxide, which favorsE2 conformations of the enzyme, increased apparent affinity for K+, whereas oligomycin, which favorsE1 conformations, decreased it. These observations are interpretable in terms of activation through two classes of cation sites. (i) At divalent cation sites, Mg2+ and Mn2+, favoring (under these conditions)E2 conformations, are effective, whereas Ca2+, favoringE1, is not, and monovalent cations complete. (ii) At monovalent cation sites divalent cations compete with K+, and although Ca2+ and Mn2+ are fairly effective, Mg2+ is a poor substitute for K+, while Na+ at these sites favorsE1 conformations. K+ increases theK m for substrate, but both Ca2+ and Mn2+ decrease it, perhaps by competing with K+. On the other hand, phosphatase activity in the presence of Na+ plus K+ is stimulated by dimethyl sulfoxide, by higher concentrations of Mg2+ and Mn2+, but not by adding Ca2+; this is consistent with stimulation occurring through facilitation of an E1 to E2 transition, perhaps an E1-P to E2-P step like that in the (Na + K)-ATPase reaction sequence. However, oligomycin stimulates phosphatase activity with Mg2+ plus Na+ alone or Mg2+ plus Na+ plus low K+: this effect of oligomycin may reflect acceleration, in the absence of adequate K+, of an alternative E2-P to E1 pathway bypassing the monovalent cation-activated steps in the hydrolytic sequence.

Key words

(Na + K)-ATPase phosphatase calcium magnesium manganese oligomycin dimethyl sulfoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, R. W., and Koval, G. J. (1972).J. Biol. Chem. 247, 3088–3092.Google Scholar
  2. Albers, R. W., and Koval, G. J. (1973).J. Biol. Chem. 248, 777–784.Google Scholar
  3. Ash, D. E., and Schramm, V. L. (1982).J. Biol. Chem. 257, 9261–9264.Google Scholar
  4. Beaugé, L. A., and Glynn, I. M. (1979).Nature (London) 280, 510–512.Google Scholar
  5. Beagué, L. E., and Campos, M. A. (1983).Biochim. Biophys. Acta 729, 137–149.Google Scholar
  6. Blostein, R. (1983).J. Biol. Chem. 258, 7948–7953.Google Scholar
  7. Cantley, L. C. (1981).Curr. Top. Bioenerg. 11, 201–237.Google Scholar
  8. Castro, J., and Farley, R.A. (1979).J. Biol. Chem. 254, 2221–2228.Google Scholar
  9. Drapeau, P., and Blostein, R. (1980).J. Biol. Chem. 255, 7828–7834.Google Scholar
  10. Fukushima, Y., and Post, R. L. (1978).J. Biol. Chem. 253, 6853–6862.Google Scholar
  11. Glynn, I. M., and Karlish, S. J. D. (1976).J. Physiol. 256, 465–496.Google Scholar
  12. Grisham, C. M., and Mildvan, A. S. (1974).J. Biol. Chem. 249, 3187–3197.Google Scholar
  13. Hasen, O. (1985). InThe Sodium Pump (I. M. Glynn and J. C. Ellory, eds.), Company of Biologists, Cambridge, in press.Google Scholar
  14. Huang, W.-H., and Askari, A. (1984).Arch. Biochem. Biophys. 231, 287–292.Google Scholar
  15. Karlish, S. J. D. (1980).J. Bioenerg. Biomembr. 12, 111–136.Google Scholar
  16. Karlish, S. J. D., Yates, D. W., and Glynn, I. M. (1978).Biochim. Biophys. Acta 525, 252–264.Google Scholar
  17. Jorgensen, P. L. (1974).Biochim. Biophys. Acta 356, 36–52.Google Scholar
  18. Jorgensen, P. L. (1975).Biochim. Biophys. Acta 401, 339–415.Google Scholar
  19. Pedemonte, C. H., and Beaugé, L. (1983).Biochim. Biophys. Acta 748, 245–253.Google Scholar
  20. Post, R. L. (1985). InThe Sodium Pump (I. M. Glynn and J. C. Ellory, eds.), Company of Biologists, Cambridge, in press.Google Scholar
  21. Post, R. L., Hegyvary, C., and Kume, S. (1972).J. Biol. Chem. 247, 6530–6540.Google Scholar
  22. Robinson, J. D. (1969).Biochemistry 8, 3348–3355.Google Scholar
  23. Robinson, J. D. (1970).Arch. Biochem. Biophys. 139, 164–171.Google Scholar
  24. Robinson, J. D. (1971).Mol. Pharmacol. 7, 238–246.Google Scholar
  25. Robinson, J. D. (1972).Biochim. Biophys. Acta 274, 542–550.Google Scholar
  26. Robinson, J. D. (1974).Biochim. Biophys. Acta 341, 232–247.Google Scholar
  27. Robinson, J. D. (1975).Biochim. Biophys. Acta 384, 250–264.Google Scholar
  28. Robinson, J. D. (1981).Biochem. Biophys. Acta 642, 405–417.Google Scholar
  29. Robinson, J. D. (1982).J. Bioenerg. Biomembr. 14, 319–333.Google Scholar
  30. Robinson, J. D. (1983).Curr. Top. Membr. Transport 19, 595–598.Google Scholar
  31. Robinson, J. D. (1985). InThe Sodium Pump (I. M. Glynn and J. C. Ellory, eds.), Company of Biologists, Cambridge, in press.Google Scholar
  32. Robinson, J. D., and Flashner, M. S. (1979).Biochim. Biophys. Acta 549, 145–176.Google Scholar
  33. Robinson, J. D., and Mercer, R. W. (1981).J. Bioenerg. Biomembr. 13, 205–218.Google Scholar
  34. Robinson, J. D., Levine, G. M., and Robinson, L. J. (1983).Biochim. Biophys. Acta 731, 406–414.Google Scholar
  35. Robinson, J. D., Robinson, L. J., and Martin, N. J. (1984).Biochim. Biophys. Acta 772, 295–306.Google Scholar
  36. Sachs, J. R. (1985). InThe Sodium Pump (I. M. Glynn and J. C. Ellory, eds.), Company of Biologists, Cambridge, in press.Google Scholar
  37. Schuurmans Stekhoven, F., and Bonting, S. L. (1981).Physiol. Rev. 61, 1–76.Google Scholar
  38. Schwartz, A., Matsui, H., and Laughter, A. H. (1968).Science 160, 323–325.Google Scholar
  39. Skou, J. C., and Esmann, M. (1980).Biochim. Biophys. Acta 601, 386–402.Google Scholar
  40. Skou, J. C. (1974).Biochim. Biophys. Acta 339, 258–273.Google Scholar
  41. Swann, A. C. (1983).Arch. Biochem. Biophys. 221, 148–157.Google Scholar
  42. Tashima, Y., Hasegawa, M., Mizunuma, H., and Sakagishi, Y. (1977).Biochim. Biophys. Acta 482, 1–10.Google Scholar
  43. Tobin, T., Akera, T., Baskin, S. I., and Brody, T. M. (1973).Mol. Pharmacol. 9, 336–349.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Joseph D. Robinson
    • 1
  1. 1.Department of PharmacologyState University of New York, Upstate Medical CenterSyracuse

Personalised recommendations