Applied Physics B

, Volume 52, Issue 3, pp 211–216 | Cite as

Efficiently generated rotational and vibrational stimulated raman emission by means of a two-color laser beam

  • S. Kawasaki
  • T. Imasaka
  • N. Ishibashi


When a two-color laser beam is introduced into pressurized hydrogen, about 40 laser emission lines are generated from the ultraviolet to the visible regions. This phenomenon is ascribed to the stimulated Raman effect due to a combination ofJ=1 →J=3 rotational andv=0 →v=1 vibrational transitions. By introducing the two-color laser beam, the threshold for generation of the rotational line is substantially reduced. The present phenomenon is attributed to four-wave mixing, which allows efficient generation of higher-order rotational and vibrational Raman lines.


42.65 51.70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.L. Farrow, P.L. Mattern, L.A. Rahn: Appl. Opt.21, 3119 (1982)Google Scholar
  2. 2.
    R.L. Farrow, R.P. Lucht, G.L. Clark, R.E. Palmer: Appl. Opt.24, 2241 (1985)Google Scholar
  3. 3.
    A.C. Eckbreth, T.J. Anderson, G.M. Dobbs: Appl. Phys. B45, 215 (1988)Google Scholar
  4. 4.
    V. Wilke, W. Schmidt: Appl. Phys.18, 177 (1979)Google Scholar
  5. 5.
    K.G.H. Baldwin, J.P. Marangos, D.D. Burgess: Opt. Commun.52, 351 (1985)Google Scholar
  6. 6.
    S. Kawasaki, T. Imasaka, N. Ishibashi: Opt. Commun.66, 285 (1988)Google Scholar
  7. 7.
    D.C. Hanna, M.T.T. Pacheco, K.-H. Wong: Opt. Commun.55, 188 (1985)Google Scholar
  8. 8.
    D.C. Hanna, D.J. Pointer, D.J. Pratt: IEEE J. QE-22, 332 (1986)Google Scholar
  9. 9.
    R.L. Byer, W.R. Trutna: Opt. Lett.3, 144 (1978)Google Scholar
  10. 10.
    P. Rabinowitz, B. Perry, A. Gnauck: Appl. Phys. Lett.39, 862 (1981)Google Scholar
  11. 11.
    R.W. Mink, E.E. Hagenlocker, W.G. Rado: Phys. Rev. Lett.17, 229 (1966)Google Scholar
  12. 12.
    H.F. Döbele, M. Hörl, M. Röwekamp: Appl. Phys. B42, 67 (1987)Google Scholar
  13. 13.
    S.J. Brosnan, R.N. Fleming, R.L. Herbst, R.L. Byer: Appl. Phys. Lett.30, 330 (1977)Google Scholar
  14. 14.
    T. Imasaka, S. Kawasaki, N. Ishibashi: Appl. Phys. B49, 389 (1989)Google Scholar
  15. 15.
    W.R. Trutna, R.L. Byer: Appl. Opt.19, 301 (1980)Google Scholar
  16. 16.
    G. Herzberg:Molecular Spectra and Molecular Structure (Van Nostrand, New York 1950) pp. 86–88Google Scholar
  17. 17.
    F. Rasetti: Phys. Rev.34, 367 (1929)Google Scholar
  18. 18.
    N.J. Everall, J.P. Partanen, J.R.M. Barr, M.J. Shaw: Opt. Commun.64, 393 (1987)Google Scholar
  19. 19.
    A. Owyoung: Opt. Lett.2, 91 (1978)Google Scholar
  20. 20.
    A. Takahashi, M. Maeda, Y. Miyazoe: Tech. Rep. Kyushu Univ.61, 395 (1988)Google Scholar
  21. 21.
    E. Berik, B. Davidenko, V. Mihkelsoo, P. Apanasevich, A. Grabchikov, V. Orlovich: Opt. Commun.56, 283 (1985)Google Scholar
  22. 22.
    A.J. Berry, D.C. Hanna: Opt. Commun.45, 357 (1983)Google Scholar
  23. 23.
    D.C. Hanna, S.G. Mussett, M.T.T. Pacheco, D.P. Shepherd: Opt. Commun.65, 279 (1988)Google Scholar
  24. 24.
    I. Chabay, G.K. Klauminzer, B.S. Hudson: Appl. Phys. Lett.28, 27 (1976)Google Scholar
  25. 25.
    P.D. Maker, R.W. Terhune: Phys. Rev.137, A801 (1965)Google Scholar
  26. 26.
    R.F. Begley, A.B. Harvey, R.L. Byer: Appl. Phys. Lett.25, 387 (1974)Google Scholar
  27. 27.
    V.G. Cooper, A.D. May, E.H. Hara, H.F.P. Knapp: Can. J. Phys.46, 2019 (1968)Google Scholar
  28. 28.
    D.J. Brink, D. Proch, D. Basting, K. Hohla, P. Lokai: Laser Opt.41 (1982)Google Scholar
  29. 29.
    A.C. Eckbreth, T.J. Anderson: Appl. Opt.24, 2731 (1985)Google Scholar
  30. 30.
    L.E. Harris: Chem. Phys. Lett.93, 335 (1982)Google Scholar
  31. 31.
    W.R. Trutna, Jr., Y.K. Park, R.L. Byer: IEEE J. QE-15, 648 (1979)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • S. Kawasaki
    • 1
  • T. Imasaka
    • 1
  • N. Ishibashi
    • 1
  1. 1.Faculty of EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations