Letters in Mathematical Physics

, Volume 32, Issue 3, pp 221–229 | Cite as

An upper bound for the atomic ground state density at the nucleus

  • Heinz Siedentop
Article

Abstract

An upper bound on the atomic ground state density at the nucleus having the expectedZ3 behavior as predicted by Lieb's ‘Strong Scott Conjecture’ is proven.

Mathematics Subject Classifications (1991)

Primary: 35J10 Secondary: 35P20, 81V45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach, V., A proof of Scott's conjecture for ions,Rep. Math. Phys. 28(2), 213–248 (1989).Google Scholar
  2. 2.
    Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., and Thirring, W., Simple bounds to the atomic one-electron density at the nucleus and to expectation values of one-electron operators,J. Phys. B,11(19), L571-L575 (1978).Google Scholar
  3. 3.
    Lieb, E. H., A lower bound for Coulomb energies,Phys. Lett. 70A, 444–446 (1979).Google Scholar
  4. 4.
    Lieb, E. H., Thomas-Fermi and related theories of atoms and molecules,Rev. Modern Phys. 53, 603–641 (1981).Google Scholar
  5. 5.
    Lieb, E. H. and Simon, B., The Thomas-Fermi theory of atoms, molecules and solids,Adv. Math. 23, 22–116 (1977).Google Scholar
  6. 6.
    Narnhofer, H., Towards control over electron density in heavy atoms, Preprint, UWThPh-1993-15, June 1993.Google Scholar
  7. 7.
    Siedentop, H., Bound for the atomic ground state density at the nucleus, inProc. Vancouver Summer School on Mathematical Quantum Mechanics, July 1993, Amer. Math. Soc., Providence, Rhode Island, to appear.Google Scholar
  8. 8.
    Siedentop, H. and Weikard, R., On some basic properties of density functionals for angular momentum channels,Rep. Math. Phys. 28, 193–218 (1986).Google Scholar
  9. 9.
    Siedentop, H. and Weikard, R., On the leading energy correction for the statistical model of the atom: Interacting case,Comm. Math. Phys. 112, 471–490 (1987).Google Scholar
  10. 10.
    Siedentop, H. and Weikard, R., A new phase space localization technique with application to the sum of negative eigenvalues of Schrödinger operators,Ann. Sci. École Norm. Sup. 24(2), 215–225 (1991).Google Scholar
  11. 11.
    Siedentop, H. and Weikard, R., Asymptotically correct lower bound for the sum of negative eigenvalues of Schrödinger operators through a decomposition of unity given by Macke,Asymptotic Anal. 8, 65–72 (1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Heinz Siedentop
    • 1
  1. 1.Matematisk instituttUniversitetet i OsloOsloNorway

Personalised recommendations