Advertisement

Letters in Mathematical Physics

, Volume 32, Issue 3, pp 173–182 | Cite as

Reflection equations andq-Minkowski space algebras

  • J. A. De Azcárraga
  • P. P. Kulish
  • F. Rodenas
Article

Abstract

We express the defining relations of theq-deformed Minkowski space algebra as well as that of the corresponding derivatives and differentials in the form of reflection equations. This formulation encompasses the covariance properties with respect to the quantum Lorentz group action in a straightforward way. Different equivalences ofq-Minkowski algebras are pointed out.

Mathematics Subject Classifications (1991)

81P05 81R50 16W30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Podles, P. and Woronowicz, S.,Comm. Math. Phys. 130, 381 (1990).Google Scholar
  2. 2.
    Carow-Watamura, U., Schlieker, M., Scholl, M., and Watamura, S.,Z. Phys. C 48, 159 (1990).Google Scholar
  3. 3.
    Ogievetsky, O., Schmidke, W., Wess, J., and Zumino, B.,Comm. Math. Phys. 150, 495 (1992).Google Scholar
  4. 4.
    Schmidke, W., Wess, J., and Zumino, B.,Z. Phys. C 52, 471 (1991).Google Scholar
  5. 5.
    Song, X. C.,Z. Phys. C 55, 417 (1992).Google Scholar
  6. 6.
    Goshal, S. and Zamolodchikov, A., BoundaryS-matrix and boundary state in two-dimensional integrable quantum field theory, Preprint RU-93-20 (1993); de Vega, H. and González-Ruiz, A., BoundaryK-matrices forXYZ, XXZ andXXX spin chains, Preprint LPTHE-PAR 93/29 (1993).Google Scholar
  7. 7.
    Kulish, P. P. and Sklyanin, E. K.,J. Phys. A Math. Gen. 25, 5963 (1992).Google Scholar
  8. 8.
    Kulish, P. P.,Phys. Lett. A 161, 50 (1991).Google Scholar
  9. 9.
    Kulish, P. P., Sasaki, R., and Schwiebert, C.,J. Math. Phys. 34, 286 (1993).Google Scholar
  10. 10.
    Kulish, P. P. and Sasaki, R.,Progr. Theoret. Phys. 89, 741 (1993).Google Scholar
  11. 11.
    Faddeev, L., Reshetikhin, N., and Takhtajan, L.,Leningrad Math. J. 1, 193 (1990).Google Scholar
  12. 12.
    Wess, J. and Zumino, B.,Nuclear Phys. Suppl. 18B, 302 (1990); Zumino, B., Introduction to differential geometry of quantum groups, Preprint LBL-31432 (UCB-PTH-62/91) (1991); See also the contributions of J. Wess and B. Zumino to theProc. XIX Int. Coll. Group Theoret. Methods in Phys., Salamanca 1992 (del Olmo M. A., Santander M. and Mateos Guilarte J., eds.), Anales de Física: Monografías 1, vol. I, p. 33–40 and 41–59, respectively (1993).Google Scholar
  13. 13.
    de Azcárraga, J. A., Kulish, P. P., and Rodenas, F., Valencia University Preprint FTUV 94-21/IFIC 94-19 (1994).Google Scholar
  14. 14.
    Majid, S. in P. P. Kulish (ed.),Quantum Groups, Lecture Notes in Math. 1510, Springer-Verlag, New York, 1992, p. 79.Google Scholar
  15. 15.
    Pillin, M., Schmidke, W., and Wess J.,Nuclear Phys. B 403, 223 (1993).Google Scholar
  16. 16.
    Flato, M. and Sternheimer D.,Lett. Math. Phys. 22, 155 (1991);Algebra Anal. 6, 361 (1994).Google Scholar
  17. 17.
    Majid, S.,J. Math. Phys. 34, 2045 (1993).Google Scholar
  18. 18.
    Kulish, P. P., Quantum groups,q-oscillators and covariant algebras Preprint YITP/K-984 (1992);Teoret. Mat. Fiz. 94, 193 (1993) (in Russian).Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • J. A. De Azcárraga
    • 1
  • P. P. Kulish
    • 1
  • F. Rodenas
    • 1
    • 2
  1. 1.Departamento de Física Teórica and IFICCentro Mixto Universidad de Valencia-CSICBurjassot (Valencia)Spain
  2. 2.Departamento de Matemática AplicadaUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations