Skip to main content
Log in

Propagation of an optical flame along a tube

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Conclusions

In the present study we have, for the first time, experimentally observed and investigated an optical discharge in a slow-combustion regime under gas-dynamics conditions close to the one-dimensional (plane) case, when there are no solid objects in the laser beam. We have shown that after the initial acceleration of the plasma there is a stationary regime of propagation of the discharge, characterized by a motion of the discharge front through the gas compressed by a shock wave that moves at high velocity. This regime was observed over an intensity range of 0.4–4 MW/cm2. In this same range we detected deviations from the continuity of discharge propagation (“jumps” of the front). The characteristics obtained for the discharge propagation are in satisfactory agreement with the calculations carried out according to the one-dimensional model. When Iav ≈ 4.3 MW/cm2, we observe a transition to a photodetonation regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. I. A. Bufetov, A. M. Prokhorov, V. B. Fedorov, et al., Pis'ma Zh. Eksp. Tekh. Fiz.,39, No. 5, 216 (1984).

    Google Scholar 

  2. F. V. Bunkin, V. I. Konov, A. M. Prokhorov, et al., Pis'ma Zh. Eksp. Tekh. Fiz., 9, 609 (1969).

    Google Scholar 

  3. I. A. Bufetov, A. M. Prokhorov, V. B. Fedorov, et al., Kvantovaya Elektron., No. 8, 751 (1981).

    Google Scholar 

  4. I. A. Bufetov, A. M. Prokhorov, V. B. Fedorov, et al., FIAN Preprint No. 199 (1982).

  5. E. L. Klosterman and S. R. Byron, J. Appl. Phys.,45, 4751 (1974).

    Google Scholar 

  6. A. A. Bakeev, L. I. Nikolashina, N. V. Prokopenko, et al., Theses of Reports of the Fifths All-Union Conference on the Nonresonance Interaction of Optical Radiation with Matter [in Russian], Leningrad (1981).

  7. A. A. Bakeev, L. A. Vasil'ev, M. E. Zemskov, et al., Kvantovaya Elekton.,10, 1812 (1983).

    Google Scholar 

  8. I. V. Nemchinov, Izv. Akad. Nauk SSSR, Ser. Fiz.,46, 1026 (1982).

    Google Scholar 

  9. L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian], Gostekhizdat, Moscow (1954).

    Google Scholar 

  10. Yu. P. Raizer, Laser Spark and Discharge Propagation [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  11. A. I. Barchukov, F. V. Bunkin, V. I. Konov, et al., Zh. Eksp. Tekh. Fiz.,66, 965 (1974).

    Google Scholar 

  12. I. A. Bufetov, V. B. Fedorov, and V. K. Fomin, FIAN Brief Communications on Physics, No. 10 [in Russian] (1980).

  13. I. A. Bufetov, A. M. Prokhorov, V. B. Fedorov, et al., Dokl. Akad. Nauk SSSR,261, 586 (1981).

    Google Scholar 

  14. I. A. Bufetov, A. M. Prokhorov, V. B. Fedorov, et al., Pis'ma Zh. Tekh. Fiz.,7, 897 (1981).

    Google Scholar 

  15. V. A. Batanov, F. V. Bunkin, A. M. Prokhorov, et al., Pis'ma Zh. Eksp. Tekh. Fiz.,11, 113 (1970).

    Google Scholar 

  16. I. V. Avilova, L. M. Biberman, V. S. Vorob'ev, et al., Optical Properties of Hot Air [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  17. I. V. Nemchinov, in: Eighth International Colloquium on Gasdynamics of Explosions and Reactive Systems. Book of Abstracts, Minsk (1981).

Download references

Authors

Additional information

Moscow. Translated from Fizika Goreniya i Vzryva, Vol. 22, No. 3, pp. 18–29, May–June, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bufetov, I.A., Fedorov, V.B. & Fomin, V.K. Propagation of an optical flame along a tube. Combust Explos Shock Waves 22, 274–284 (1986). https://doi.org/10.1007/BF00750342

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00750342

Keywords

Navigation