Skip to main content
Log in

Antilocality and a Reeh-Schlieder theorem on manifolds

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that the operatorA 1/2, whereA is any positive self-adjoint extension of a positive operator of the form ‘-Laplace-Beltrami operator +potential’ on ann-dimensional Riemannian manifold, is strongly antilocal. Using this result, a Reeh-Schlieder theorem for the canonical vacuum of the Klein-Gordon field propagating in ultrastatic spacetimes is derived. In a further application, we gain weaker versions of the Reeh-Schlieder theorem for more general situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H. and Woods, J. S.,J. Math. Phys. 4, 637 (1963); Araki, H.,J. Math. Phys. 4, 1343.

    Google Scholar 

  2. Aronszajn, N., A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order,J. Math. Pures Appl. 36, 235–249 (1957).

    Google Scholar 

  3. Beem, J. K. and Ehrlich, P. E.,Global Lorentzian Geometry, Marcel Dekker, New York, 1981.

    Google Scholar 

  4. Beyer, H., Remarks on Fulling's quantization,Classical Quantum Gravity 8, 1091–1112 (1991).

    Google Scholar 

  5. Browder, F., Functional analysis and partial differential equations, II,Math. Ann. 145, 81–226 (1962).

    Google Scholar 

  6. Baumgärtel, H. and Wollenberg, M.,Causal Nets of Operator Algebras, Akademie Verlag, Berlin, 1992.

    Google Scholar 

  7. Cycon, H. L., Froese, R. G., Kirsch, W., and Simon, B.,Schrödinger Operators, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  8. Chernoff, P. R., Essential self-adjointness of powers of generators of hyperbolic equations,J. Funct. Anal. 12, 401–414 (1973).

    Google Scholar 

  9. Cordes, H., Über die eindeutige Bestimmtheit der Lösungen Elliptischer Differentialgleichungen durch Anfangsvorgaben,Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl. 11a, 239–258 (1956).

    Google Scholar 

  10. Dimock, J., Algebras of local observables on a manifold,Comm. Math. Phys. 77, 219–228 (1980).

    Google Scholar 

  11. Dixmier, J. and Maréchal, O., Vecteurs totalisateuers d'une algèbre de von Neumann,Comm. Math. Phys. 22, 44–50 (1971).

    Google Scholar 

  12. Emch, G. G.,Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley, New York, 1972.

    Google Scholar 

  13. Fulling, S. A., Narcowich, F. J., and Wald, R. M., Singularity structure of the two-point function in quantum field theory in curved spacetime,II,Ann. Phys. (NY)136, 243–272 (1981).

    Google Scholar 

  14. Fulling, S. A., Sweeny, M., and Wald, R. M.,Comm. Math. Phys. 63, 257–264 (1978).

    Google Scholar 

  15. Haag, R.,Local Quantum Physics, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  16. Kay, B. S., Linear spin-zero quantum fields in external gravitational and scalar fields,Comm. Math. Phys. 62, 55–70 (1978).

    Google Scholar 

  17. Kay, B. S.,J. Math. Phys. 20, 1712–1713 (1979).

    Google Scholar 

  18. Kay, B. S., The double-wedge algebra for quantum fields on Schwarzschild and Minkowski spacetimes,Comm. Math. Phys. 100, 57–81 (1985).

    Google Scholar 

  19. Kay, B. S. and Wald, R. M., Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate Killing horizon,Phys. Rep. 207, 49–136 (1991).

    Google Scholar 

  20. Leyland, P., Roberts, J. E., and Testard, D., Duality for quantum free fields, Preprint, Marseilles, 1978.

  21. Masuda, K., A unique continuation theorem for solutions of wave equations with variable coefficients,J. Math. Anal. Appl. 21, 369–376 (1968).

    Google Scholar 

  22. Masuda, K., Anti-locality of the one-half power of elliptic differential operators,Publ. RIMS, Kyoto Univ. 8, 207–210 (1972/73).

    Google Scholar 

  23. Murata, M., Anti-locality of certain functions of the Laplace operator,J. Math. Soc. Japan 25, 556–564 (1973).

    Google Scholar 

  24. Nirenberg, L., Remarks on strongly elliptic partial differential equations,Comm. Pure Appl. Math. 8, 648–674 (1955).

    Google Scholar 

  25. Reeh, H. and Schlieder, S., Bemerkungen zur Unitäräquivalenz von Lorentz-invarianten Feldern,Nuovo Cimento 22, 1051–1068 (1961).

    Google Scholar 

  26. Segal, I. and Goodman, R., Anti-locality of certain Lorentz-invariant operators,J. Math. Mech. 14, 629–638 (1965).

    Google Scholar 

  27. Verch, R., Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved spacetime, Preprint, Berlin, SFB 288, 32 (1992).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the DFG, SFB 288 ‘Differentialgeometrie und Quantenphysik’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verch, R. Antilocality and a Reeh-Schlieder theorem on manifolds. Lett Math Phys 28, 143–154 (1993). https://doi.org/10.1007/BF00750307

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00750307

Mathematics Subject Classifications (1991)

Navigation