Letters in Mathematical Physics

, Volume 28, Issue 2, pp 115–122 | Cite as

On the parametrization of finite-gap solutions by frequency and wavenumber vectors and a theorem of I. krichever

  • Ramil F. Bikbaev
  • Sergej B. Kuksin
Article

Abstract

We discuss the parametrization of real finite-gap solutions of an integrable equation by frequency and wavenumber vectors. This parametrization underlies perturbation and averaging theories for the finite-gap solutions. Out of the framework of integrable equations, the parametrization gives a convenient coordinate system on the corresponding manifold of Riemann curves.

Mathematics Subject Classifications (1991)

35Q53 35A30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flaschka, F., Forest, M. G., and McLaughlin, D. W.,Comm. Pure. Appl. Math. 33, 739 (1988).Google Scholar
  2. 2.
    Dobrokhotov, S. Yu., and Maslov, V. P.,Math. Phys. Rev. 3, 221 (1982).Google Scholar
  3. 3.
    Dubrovin, B. A., and Novikov, S. P.,Russian Math. Surveys 44(1), 35 (1989).Google Scholar
  4. 4.
    Lax, P. D., Levermore, C. D., and Venakides, S., in T. Fokas and V. E. Zakharov (eds),Important Developments in Soliton Theory 1980–1990, Springer-Verlag, Berlin, 1992, p. 1.Google Scholar
  5. 5.
    Bikbaev, R. F.,Zap. Nauchn. Sem. LOMI 180, 23 (1989) (Russian).Google Scholar
  6. 6.
    Kuksin, S. B.,Mat. Zametki 45(5), 38 (1989); English transl. inMathematical Notes 45(5), 373 (1989).Google Scholar
  7. 7.
    Krichever, I. M.,Soviet Sci. Rev. C. Math. Phys. 9, (1 (1991).Google Scholar
  8. 8.
    Kuksin, S. B.,Mat. Sbornik 136(178), 3 (1988); English transl. inMath. USSR Sbornik 64, 397 (1989).Google Scholar
  9. 9.
    Bikbaev, R. F. and Kuksin, S. B.,Algebra i Analiz 4(3), 42 (1992) (Russian).Google Scholar
  10. 10.
    Bobenko, A. I. and Kuksin, S. B.,Phys. Lett. A 161, 274 (1991).Google Scholar
  11. 11.
    Ercolani, N., Knörrer, H., and Trubowitz, E., Curves that generate doubly periodic solutions of the Kadomcev-Petiashvili equation are dense in moduli space, Preprint FIM, ETH, Zürich, 1990.Google Scholar
  12. 12.
    Bikbaev, R. F.,Funct. Anal. Appl. 23(4), (1989) (Russian).Google Scholar
  13. 13.
    B. Bikaev, R.F.,Algebra i Analiz 5(4) (1993) (Russian).Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Ramil F. Bikbaev
    • 1
  • Sergej B. Kuksin
    • 1
  1. 1.Forschungsinstitut für MathematikETH ZentrumZurichSwitzerland

Personalised recommendations