Advertisement

Letters in Mathematical Physics

, Volume 28, Issue 2, pp 97–106 | Cite as

Hilbert space cocycles as representations of (3 + 1)-d current algebras

  • Jouko Mickelsson
Article

Abstract

It is proposed that instead of normal representations, one should look at cocycles of group extensions valued in certain groups of unitary operators acting in a Hilbert space (e.g. the Fock space of chiral fermions), when dealing with groups associated to current algebras in gauge theories in 3 + 1 spacetime dimensions. The appropriate cocycle is evaluated in the case of the group of smooth maps from the physical three-space to a compact Lie group.

The cocyclic representation of a componentX of the current is obtained through two regularizations, (1) a conjugation by a background potential dependent unitary operatorhA, (2) by a subtraction-h A -1 xhA, where ℒ x is a derivative along a gauge orbit. It is only the total operatorh A -1 XhA -h A -1 xhA which is quantizable in the Fock space using the usual normal ordering subtraction.

Mathematics Subject Classifications (1991)

81D15 17B65 58B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araki, H., Bogoliubov automorphisms and Fock representations of canonical anticommutation relations, inContemporary Mathematics Vol. 62, American Mathematical Society Providence, 1987.Google Scholar
  2. 2.
    Atiyah, M. and Singer, I., Dirac operators coupled to vector potentials,Proc. Natl. Acad. Sci. USA 81, 2597 (1984); Singer, I., Families of Dirac operators with applications to physics,Asterisque 323 (1985).Google Scholar
  3. 3.
    Coleman, S., Gross, D., and Jackiw, R., Fermion avatars of the Sugawara model.Phys. Rev. 180, 1359 (1969).Google Scholar
  4. 4.
    Dicke, A. and Goldin, G., Writing Hamiltonians in terms of local currents,Phys. Rev. D 5, 845 (1972).Google Scholar
  5. 5.
    Faddeev, L., Operator anomaly for the Gauss law,Phys. Lett. B,145, 81 (1984); Faddeev, L. and Shatasvili, S. L., Algebraic and Hamiltonian methods in the theory of non-Abelian anomalies,Theoret. Math. Phys. 60, 770 (1984).Google Scholar
  6. 6.
    Itoh, T. and Odaka, K., A particle-picture approach to anomalies in chiral gauge theories,Fortschr. Phys. 39, 557 (1991).Google Scholar
  7. 7.
    Jackiw, R. and Johnson, K., Anomalies of the axial vector current,Phys. Rev. 182, 1459 (1969).Google Scholar
  8. 8.
    Kac, V.,Infinite Dimensional Lie Algebras, Cambridge University Press, Cambridge, 1985.Google Scholar
  9. 9.
    Langmann, E., Fermion and boson current algebras in (3 + 1) dimensions, in J. Mickelsson and O. Pekonen (eds),Topological and Geometrical Methods in Field Theory, World Scientific, Singapore, 1992.Google Scholar
  10. 10.
    Lundberg, L.-E., Quasi-free ‘second quantization’,Comm. Math. Phys. 50, 103 (1976).Google Scholar
  11. 11.
    Mickelsson, J., Chiral anomalies in even and odd dimensions,Comm. Math. Phys. 97, 361 (1985).Google Scholar
  12. 12.
    Mickelsson, J., Kac-Moody groups, topology of the Dirac determinant bundle, and fermionization,Comm. Math. Phys. 110, 173 (1988).Google Scholar
  13. 13.
    Mickelsson, J.,Current Algebras and Groups, Plenum, New York, London, 1989.Google Scholar
  14. 14.
    Mickelsson, J., Commutator anomaly and the Fock bundle,Comm. Math. Phys. 127, (1990); On the Hamiltonian approach to commutator anomalies in 3 + 1 dimensions,Phys. Lett. B 241, 70 (1990).Google Scholar
  15. 15.
    Mickelsson, J., Bose-Fermi correspondence, Schwinger terms, and Fock bundles in 3 + 1 dimensions, in J. Mickelsson and O. Pekonen (eds),Topological and Geometrical Methods in Field Theory, World Scientific, Singapore, 1992.Google Scholar
  16. 16.
    Mickelsson, J. and Rajeev, S., Current algebras ind +1 dimensions and determinant bundles over infinite-dimensional Grassmannians,Comm. Math. Phys. 116, 365 (1988).Google Scholar
  17. 17.
    Nelson, P. and Alvarez-Gaumé, L., Hamiltonian interpretation of anomalies,Comm. Math. Phys. 99, 103 (1985).Google Scholar
  18. 18.
    Pickrell, D., On the Mickelsson-Faddeev extensions and unitary representations.Comm. Math. Phys. 123, 617 (1989).Google Scholar
  19. 19.
    Pressley, A. and Segal, G.,Loop Groups, Clarendon, Oxford, 1986.Google Scholar
  20. 20.
    Ruijsenaars, S. N. M., Index formulas for generalized Wiener-Hopf operators and Boson-Fermion correspondence in 2N dimensions,Comm. Math. Phys. 124, 553 (1989).Google Scholar
  21. 21.
    Segal, G., Faddeev's anomaly in the Gauss' law, Preprint (unpublished), Oxford, 1985.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Jouko Mickelsson
    • 1
  1. 1.Department for Theoretical PhysicsUniversity of FreiburgGermany

Personalised recommendations