Journal of Bioenergetics and Biomembranes

, Volume 8, Issue 4, pp 209–220 | Cite as

Chemical models of oxidative phosphorylation

  • Jui H. Wang


Chemical models for coupling oxidation to phosphorylation are summarized and examined both from the standpoint of organic reaction mechanisms and with respect to their relevance to mitochondria and chloroplasts. In order to accelerate the progress of our research in bioenergetics, it is suggested to focus at least as much attention on structural biochemistry as on phenomenological observations of energy-transducing membranes.


Organic Chemistry Reaction Mechanism Oxidative Phosphorylation Chemical Model Organic Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y.K. Shen and G.M. Shen,Scientia Sinica,11 (1962) 1097–1106.Google Scholar
  2. 2.
    G. Hind and A.T. Jagendorf,Prof. Nat. Acad. Sci U.S.A.,49 (1963) 715–722.Google Scholar
  3. 3.
    S. Izawa,Biochim. Biophys. Acta,223 (1970) 165–173.Google Scholar
  4. 4.
    Jui H. Wang, C.S. Yang, and S.-I Tu,Biochemistry,10 (1971) 4922–4930.Google Scholar
  5. 5.
    W.M. Clark, D.W. Hutchinson, and A. Todd,J. Chem. Soc. (1961) 722–725.Google Scholar
  6. 6.
    M. Vilkas and E. Lederer,Experimentia,18 (1962) 546–549.Google Scholar
  7. 7.
    C.D. Snyder, S.J. DiMari, and H. Rapoport,J. Am. Chem. Soc.,88 (1966) 3868–3870.Google Scholar
  8. 8.
    D.L. Gutnick and A.F. Brodie,J. Biol. Chem.,240 (1965) PC3698-PC3699.Google Scholar
  9. 9.
    W.W. Parson and H. Rudney,Biochemistry,5 (1966) 1013–1018.Google Scholar
  10. 10.
    A.F. Brodie, inBiochemistry of Quinones, R.A. Morton, ed., Academic Press, New York (1965) pp. 355–404.Google Scholar
  11. 11.
    C.D. Snyder and H. Rapoport,J. Am. Chem. Soc.,89 (1967) 1269–1271.Google Scholar
  12. 12.
    E.J.H. Bechara and G. Cilento,Biochemistry,11 (1972) 2606–2610.Google Scholar
  13. 13.
    E.J.H. Bechara and G. Cilento,Biochemistry,10 (1971) 1831–1840.Google Scholar
  14. 14.
    W.S. Brinigar, D.B. Knaff, and Jui H. Wang,Biochemistry,6 (1967) 36–42.Google Scholar
  15. 15.
    T.A. Cooper, W.S. Brinigar, and Jui H. Wang,J. Biol. Chem.,243 (1968) 5854–5858.Google Scholar
  16. 16.
    Jui H. Wang,Acc. Chem. Res.,3 (1970) 90–97.Google Scholar
  17. 17.
    S.-I. Tu and Jui H. Wang,Biochemistry,9 (1970) 4505–4509.Google Scholar
  18. 18.
    S.-I. Tu and Jui H. Wang, unpublished work.Google Scholar
  19. 19.
    K.W. Lam, J.B. Warshaw, and D.R. Sanadi,Arch. Biochem. Biophys. 119 (1967) 477–484.Google Scholar
  20. 20.
    K.W. Lam, D. Swann, and M. Elzinga,Arch. Biochem. Biophys.,130 (1969) 175–182.Google Scholar
  21. 21.
    J.H. Southard and D.E. Green,Biochem. Biophys. Res. Commun.,61 (1974) 1310–1316.Google Scholar
  22. 22.
    J.H. Southard, J.T. Penniston, and D.E. Green,J. Biol. Chem.,248 (1973) 3546–3550.Google Scholar
  23. 23.
    J.H. Southard, G.A. Blondin, and D.E. Green,J. Biol. Chem.,249 (1974) 678–681.Google Scholar
  24. 24.
    Jui H. Wang, O. Yamauchi, S.-I. Tu, K. Wang, D.R. Saunders, L. Copeland, and E. Copeland,Arch. Biochem. Biophys.,159 (1973) 785–791.Google Scholar
  25. 25.
    L. Copeland, C.J. Deutsch, S.-I. Tu, and Jui H. Wang,Arch. Biochem. Biophys.,160 (1974) 451–457.Google Scholar
  26. 26.
    Th. Wieland and E. Bäuerlein,Chem. Ber.,100 (1967) 3869–3876.Google Scholar
  27. 27.
    A.B. Falcone,Proc. Nat. Acad. Sci U.S.A.,56 (1966) 1043–1046.Google Scholar
  28. 28.
    P.D. Boyer, inOxidases and Related Redox Systems, Vol. 2, T.E. King, H.S. Mason, and M. Morrison, eds., Wiley, New York (1965) pp. 994–1008.Google Scholar
  29. 29.
    B.T. Storey,J. Theor. Biol.,28 (1970) 233–259.Google Scholar
  30. 30.
    T. Higuchi and K.-H. Gensch,J. Am. Chem. Soc.,88 (1966) 3874–3875, 5486–5491.Google Scholar
  31. 31.
    Th. Wieland and E. Bauerlein,Angew. Chem.,80 (1968) 915–916;Angew. Chem. Intern. Ed.,7 (1968) 893–894.Google Scholar
  32. 32.
    E. Bäuerlein, inGlutathione L. Flohè, H.C. Benöhr, H. Sies, H.D. Waller, and A. Wendel, eds., G. Thieme-Verlag Stuttgart (1972) pp. 44–55.Google Scholar
  33. 33.
    E. Bäuerlein, M. Klingenflusz, and Th. Wieland,Europ. J. Biochem.,24 (1971) 308–312.Google Scholar
  34. 34.
    D. Lambeth and H.A. Lardy, quoted by H.A. Lardy and S.M. Ferguson,Ann. Rev. Biochem.,38 (1969) 1020.Google Scholar
  35. 35.
    W.S. Allison and L.V. Benitez,Proc. Nat. Acad. Sci U.S.A.,69 (1972) 3004–3008.Google Scholar
  36. 36.
    R.S. Glass, E.B. Williams, and G.S. Wilson,Biochemistry,13 (1974) 2800–2805.Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • Jui H. Wang
    • 1
  1. 1.Bioenergetics Laboratory, Acheson HallState University of New YorkBuffalo

Personalised recommendations