Skip to main content
Log in

Photoelectrochemical effects in the electrolyte-pigment-metal system

III. Chlorophyll films short-circuit photocurrent transients light energy conversion efficiency

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Short-circuit photocurrents produced by a semitransparent metallic electrode covered with multilayers of chlorophyll and immersed in an electrolyte have been studied. The action spectrum of maximum photocurrent is identical to the absorption spectrum of the film of pigment. The kinetics of rise of the photocurrent are photoindependent for thin multilayers but dependent on thickness. Comparison of efficiency of light energy conversion on the basis of short-circuit photocurrent seems to show that the stack of Chla monolayers is the more efficient chlorophyll solid system. Introduction for the same number of Chla molecules of vitamin K1 and Phytol shows that vitamin K1 acts probably like an excitation quencher as in monolayers at the water-air interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ti-Tien, in:Bilayer Lipid Membranes (Theory and Practice), Marcel Dekker, Inc., New York (1974).

    Google Scholar 

  2. G.L. Gaines, in:Insoluble Monolayers at Liquid-Gas Interfaces, Interscience publishers (J. Wiley and Sons Inc.), New York (1966).

    Google Scholar 

  3. B. Ke, in:The Chlorophylls, Academic Press, New York (1966), p. 253.

    Google Scholar 

  4. H. Tributsch,Photochem. Photobiol.,16 (1972) 261.

    Google Scholar 

  5. P.J. Reucroft and W.H. Simpson,Discussions of the Faraday Society,51 (1971) 202.

    Google Scholar 

  6. K.J. McCree,Biochim. Biophys. Acta,102 (1965) 90.

    Google Scholar 

  7. B. Ke and W. Sperling,Photochem. Photobiol.,5 (1966) 857;5 (1966) 865.

    Google Scholar 

  8. J. Bourdon and B. Schnuriger,Photochem. Photobiol.,8 (1968) 361.

    Google Scholar 

  9. J.G. Villar, Thèse de Doctorat d'Etat N°. 1374, Paris Centre d'Orsay (1974).

  10. J.G. Villar,C.R. Acad. Sci.,275 (1972) 861;275 (1972) 595.

    Google Scholar 

  11. J.G. Villar, Papers I and II, this issue,J. Bioenerg.,8 (1976) 000–000.

    Google Scholar 

  12. G.K. Getov and S.T. Jordanova,Biofizika,17 (1972) 782 [Engl. transl.,Biophysics,17 (1972) 818].

    Google Scholar 

  13. I.S. Meilanov, V.A. Benderskii, and L.A. Blyumenfel'd,Biofizika,15 (1970) 822 [Engl. transl.,Biophysics,15 (1970) 851].

    Google Scholar 

  14. W.D. Bellamy, G.L. Gaines, Jr., and A.G. Twett,J. Chem. Phys.,39 (1963) 2528.

    Google Scholar 

  15. G.L. Gaines, Jr., W.D. Bellamy, and A.G. Tweet,J. Chem. Phys.,41 (1964) 538.

    Google Scholar 

  16. A.G. Tweet, W.D. Bellamy, and G.L. Gaines, Jr.,J. Chem. Phys.,41 (1964) 2068.

    Google Scholar 

  17. G.L. Gaines, Jr., A.G. Tweet, and W.D. Bellamy,J. Chem. Phys.,42 (1965) 2193.

    Google Scholar 

  18. Yu. M. Stolovitsky, A.Y. Shkuropatov, S.I. Kadoshnikov, and V.B. Evstigneev,FEBS Lett.,34 (1973) 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villar, JG. Photoelectrochemical effects in the electrolyte-pigment-metal system. J Bioenerg Biomembr 8, 199–208 (1976). https://doi.org/10.1007/BF00750284

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00750284

Keywords

Navigation